Cyclophilin D as a potential target for antioxidants in neurodegeneration: the X-ALD case

Abstract X-linked adrenoleukodystrophy (X-ALD) is a severe inherited neurodegenerative disorder characterized by adrenal insufficiency and graded damage in the nervous system. Loss of function of the peroxisomal ABCD1 fatty-acid transporter, resulting in the accumulation of very long-chain fatty acids in organs and plasma, is the genetic cause. Treatment with a combination of antioxidants halts the axonal degeneration and locomotor impairment displayed by the animal model of X-ALD, and is a proof of concept that oxidative stress contributes to axonal damage. New evidence demonstrates that metabolic failure and the opening of the mitochondrial permeability transition pore orchestrated by cyclophilin D underlies oxidative stress-induced axonal degeneration. Thus, cyclophilin D could serve as a therapeutic target for the treatment of X-ALD and cyclophilin D-dependent neurodegenerative and non-neurodegenerative diseases.

[1]  I. Ferrer,et al.  Oxidative stress modulates mitochondrial failure and cyclophilin D function in X-linked adrenoleukodystrophy , 2012, Brain : a journal of neurology.

[2]  E. Galea,et al.  Oxidative stress underlying axonal degeneration in adrenoleukodystrophy: a paradigm for multifactorial neurodegenerative diseases? , 2012, Biochimica et biophysica acta.

[3]  B. Poll-The,et al.  X-linked adrenoleukodystrophy (X-ALD): clinical presentation and guidelines for diagnosis, follow-up and management , 2012, Orphanet Journal of Rare Diseases.

[4]  A. Vejux,et al.  Induction of Mitochondrial Changes Associated with Oxidative Stress on Very Long Chain Fatty Acids (C22:0, C24:0, or C26:0)-Treated Human Neuronal Cells (SK-NB-E) , 2012, Oxidative medicine and cellular longevity.

[5]  A. Vejux,et al.  Evidence of oxidative stress in very long chain fatty acid – Treated oligodendrocytes and potentialization of ROS production using RNA interference-directed knockdown of ABCD1 and ACOX1 peroxisomal proteins , 2012, Neuroscience.

[6]  M. Beal,et al.  Mitochondrial permeability transition pore component cyclophilin D distinguishes nigrostriatal dopaminergic death paradigms in the MPTP mouse model of Parkinson's disease. , 2012, Antioxidants & redox signaling.

[7]  E. Génin,et al.  Incidence of Abcd1 level on the induction of cell death and organelle dysfunctions triggered by very long chain fatty acids and TNF-α on oligodendrocytes and astrocytes. , 2012, Neurotoxicology.

[8]  Ying Wang,et al.  Redox sensing by proteins: oxidative modifications on cysteines and the consequent events. , 2012, Antioxidants & redox signaling.

[9]  F. Kelly,et al.  Functional genomic analysis unravels a metabolic-inflammatory interplay in adrenoleukodystrophy , 2011, Human molecular genetics.

[10]  E. Murphy,et al.  Cysteine 203 of Cyclophilin D Is Critical for Cyclophilin D Activation of the Mitochondrial Permeability Transition Pore* , 2011, The Journal of Biological Chemistry.

[11]  M. Portero-Otín,et al.  Oxidative damage compromises energy metabolism in the axonal degeneration mouse model of X-adrenoleukodystrophy. , 2011, Antioxidants & redox signaling.

[12]  M. Portero-Otín,et al.  Antioxidants Halt Axonal Degeneration in a Mouse Model of X-Adrenoleukodystrophy , 2011, Annals of neurology.

[13]  C. Blackstone,et al.  Mitochondria unite to survive , 2011, Nature Cell Biology.

[14]  P. Hemachandra Reddy,et al.  Abnormal mitochondrial dynamics, mitochondrial loss and mutant huntingtin oligomers in Huntington's disease: implications for selective neuronal damage. , 2011, Human molecular genetics.

[15]  A. Colell,et al.  Oxidative stress and altered mitochondrial function in neurodegenerative diseases: lessons from mouse models. , 2010, CNS & neurological disorders drug targets.

[16]  P. Aubourg,et al.  Current and Future Pharmacological Treatment Strategies in X‐Linked Adrenoleukodystrophy , 2010, Brain pathology.

[17]  B. Wirth,et al.  Valproic acid induces antioxidant effects in X-linked adrenoleukodystrophy. , 2010, Human molecular genetics.

[18]  M. Portero-Otín,et al.  Protein Targets of Oxidative Damage in Human Neurodegenerative Diseases with Abnormal Protein Aggregates , 2010, Brain pathology.

[19]  I. Ferrer,et al.  General Aspects and Neuropathology of X‐Linked Adrenoleukodystrophy , 2009, Brain pathology.

[20]  I. Singh,et al.  Pathomechanisms Underlying X‐Adrenoleukodystrophy: A Three‐Hit Hypothesis , 2009, Brain pathology.

[21]  A. Kandlbinder,et al.  Redox characterization of human cyclophilin D: identification of a new mammalian mitochondrial redox sensor? , 2009, Archives of biochemistry and biophysics.

[22]  L. Martin,et al.  The mitochondrial permeability transition pore in motor neurons: Involvement in the pathobiology of ALS mice , 2009, Experimental Neurology.

[23]  A. Halestrap What is the mitochondrial permeability transition pore? , 2009, Journal of molecular and cellular cardiology.

[24]  Michael R. Duchen,et al.  PINK1-Associated Parkinson's Disease Is Caused by Neuronal Vulnerability to Calcium-Induced Cell Death , 2009, Molecular cell.

[25]  D. Praticò,et al.  Evidence of Oxidative Stress in Alzheimer's Disease Brain and Antioxidant Therapy , 2008, Annals of the New York Academy of Sciences.

[26]  R. Ferrante,et al.  Evidence of Oxidant Damage in Huntington's Disease: Translational Strategies Using Antioxidants , 2008, Annals of the New York Academy of Sciences.

[27]  H. Waterham,et al.  The human peroxisomal ABC half transporter ALDP functions as a homodimer and accepts acyl–CoA esters , 2008, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[28]  G. McKhann,et al.  Cyclophilin D deficiency attenuates mitochondrial and neuronal perturbation and ameliorates learning and memory in Alzheimer's disease , 2008, Nature Medicine.

[29]  G. Reiser,et al.  Toxic effects of X-linked adrenoleukodystrophy-associated, very long chain fatty acids on glial cells and neurons from rat hippocampus in culture. , 2008, Human molecular genetics.

[30]  A. Moser,et al.  Is microglial apoptosis an early pathogenic change in cerebral X‐linked adrenoleukodystrophy? , 2008, Annals of neurology.

[31]  R. Pamplona,et al.  Highly resistant macromolecular components and low rate of generation of endogenous damage: Two key traits of longevity , 2007, Ageing Research Reviews.

[32]  D. Bourdette,et al.  Cyclophilin D inactivation protects axons in experimental autoimmune encephalomyelitis, an animal model of multiple sclerosis , 2007, Proceedings of the National Academy of Sciences.

[33]  J. Gärtner,et al.  X-linked adrenoleukodystrophy: clinical, biochemical and pathogenetic aspects. , 2006, Biochimica et biophysica acta.

[34]  M. Beal,et al.  Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases , 2006, Nature.

[35]  Hugo Moser,et al.  Combined liquid chromatography-tandem mass spectrometry as an analytical method for high throughput screening for X-linked adrenoleukodystrophy and other peroxisomal disorders: preliminary findings. , 2006, Molecular genetics and metabolism.

[36]  Fabio Di Lisa,et al.  The mitochondrial permeability transition from in vitro artifact to disease target , 2006, The FEBS journal.

[37]  H. Moser,et al.  Adreno-leukodystrophy: Oxidative Stress of Mice and Men , 2005, Journal of neuropathology and experimental neurology.

[38]  P. Vreken,et al.  Inactivation of the peroxisomal ABCD2 transporter in the mouse leads to late-onset ataxia involving mitochondria, Golgi and endoplasmic reticulum damage. , 2005, Human molecular genetics.

[39]  S. Korsmeyer,et al.  Cyclophilin D is a component of mitochondrial permeability transition and mediates neuronal cell death after focal cerebral ischemia. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[40]  Jeffrey Robbins,et al.  Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death , 2005, Nature.

[41]  A. Halestrap,et al.  A pore way to die , 2005 .

[42]  J. Mandel,et al.  Functional overlap between ABCD1 (ALD) and ABCD2 (ALDR) transporters: a therapeutic target for X-adrenoleukodystrophy. , 2004, Human molecular genetics.

[43]  H. Moser,et al.  Cerebral X-linked adrenoleukodystrophy: the international hematopoietic cell transplantation experience from 1982 to 1999. , 2004, Blood.

[44]  K. Csiszȧr,et al.  Life span extension and reduced neuronal death after weekly intraventricular cyclosporin injections in the G93A transgenic mouse model of amyotrophic lateral sclerosis. , 2004, Journal of neurosurgery.

[45]  C. Vargas,et al.  Evidence that oxidative stress is increased in patients with X-linked adrenoleukodystrophy. , 2004, Biochimica et biophysica acta.

[46]  M. Schachner,et al.  Late onset neurological phenotype of the X-ALD gene inactivation in mice: a mouse model for adrenomyeloneuropathy. , 2002, Human molecular genetics.

[47]  H. Moser,et al.  Adrenoleukodystrophy: Incidence, new mutation rate, and results of extended family screening , 2001, Annals of neurology.

[48]  B. Fanburg,et al.  Reactive oxygen species in cell signaling. , 2000, American journal of physiology. Lung cellular and molecular physiology.

[49]  I. Jambaqué,et al.  Long-term effect of bone-marrow transplantation for childhood-onset cerebral X-linked adrenoleukodystrophy , 2000, The Lancet.

[50]  H. Moser,et al.  Adrenomyeloneuropathy: A Neuropathologic Review Featuring Its Noninflammatory Myelopathy , 2000, Journal of neuropathology and experimental neurology.

[51]  H. Moser,et al.  Peroxisomal Disorders: Genotype, Phenotype, Major Neuropathologic Lesions, and Pathogenesis , 1998 .

[52]  K. Nave,et al.  Targeted inactivation of the X‐linked adrenoleukodystrophy gene in mice , 1997, Journal of neuroscience research.

[53]  H. Moser,et al.  A mouse model for X-linked adrenoleukodystrophy. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[54]  T. Yamada,et al.  Adrenoleukodystrophy protein-deficient mice represent abnormality of very long chain fatty acid metabolism. , 1997, Biochemical and biophysical research communications.

[55]  P. Brunetti,et al.  X-linked adrenoleukodystrophy is a frequent cause of idiopathic Addison's disease in young adult male patients. , 1996, The Journal of clinical endocrinology and metabolism.

[56]  A. Halestrap,et al.  Recruitment of mitochondrial cyclophilin to the mitochondrial inner membrane under conditions of oxidative stress that enhance the opening of a calcium-sensitive non-specific channel. , 1994, The Biochemical journal.

[57]  L. Scorrano,et al.  The voltage sensor of the mitochondrial permeability transition pore is tuned by the oxidation-reduction state of vicinal thiols. Increase of the gating potential by oxidants and its reversal by reducing agents. , 1994, The Journal of biological chemistry.

[58]  Jean Mosser,et al.  Putative X-linked adrenoleukodystrophy gene shares unexpected homology with ABC transporters , 1993, Nature.

[59]  N. Takahashi,et al.  Catalysis of protein folding by cyclophilins from different species. , 1991, The Journal of biological chemistry.

[60]  A. Halestrap,et al.  Inhibition of Ca2(+)-induced large-amplitude swelling of liver and heart mitochondria by cyclosporin is probably caused by the inhibitor binding to mitochondrial-matrix peptidyl-prolyl cis-trans isomerase and preventing it interacting with the adenine nucleotide translocase. , 1990, The Biochemical journal.

[61]  M. Crompton,et al.  Inhibition by cyclosporin A of a Ca2+-dependent pore in heart mitochondria activated by inorganic phosphate and oxidative stress. , 1988, The Biochemical journal.

[62]  R. Wanders,et al.  X-linked adrenoleukodystrophy: defective peroxisomal oxidation of very long chain fatty acids but not of very long chain fatty acyl-CoA esters. , 1987, Clinica chimica acta; international journal of clinical chemistry.

[63]  H. Moser,et al.  Adrenoleukodystrophy: Impaired Oxidation of Very Long Chain Fatty Acids in White Blood Cells, Cultured Skin Fibroblasts, and Amniocytes , 1984, Pediatric Research.

[64]  K. Suzuki,et al.  Brain gangliosides in adrenoleukodystrophy 1 , 1976 .

[65]  M. Arti,et al.  MITOCHONDRIAL PERMEABILITY TRANSITION PORES: ANOTHER VIEW , 2012 .

[66]  Heng Du,et al.  Mitochondrial permeability transition pore in Alzheimer's disease: cyclophilin D and amyloid beta. , 2010, Biochimica et biophysica acta.

[67]  L. Martin The mitochondrial permeability transition pore: a molecular target for amyotrophic lateral sclerosis therapy. , 2010, Biochimica et biophysica acta.

[68]  Stéphane Fourcade,et al.  A key role for the peroxisomal ABCD2 transporter in fatty acid homeostasis. , 2009, American journal of physiology. Endocrinology and metabolism.

[69]  An-Guor Wang,et al.  X-linked adrenoleukodystrophy , 1993, Clinical Neurology and Neurosurgery.

[70]  G. Dorn,et al.  Cyclophilin D-dependent mitochondrial permeability transition regulates some necrotic but not apoptotic cell death , 2022 .