Unveiling the predictive power of static structure in glassy systems

[1]  Sergio Gomez Colmenarejo,et al.  TF-Replicator: Distributed Machine Learning for Researchers , 2019, ArXiv.

[2]  E. Lerner,et al.  Anisotropic structural predictor in glassy materials. , 2019, Physical review. E.

[3]  Wei Chen,et al.  Learning to predict the cosmological structure formation , 2018, Proceedings of the National Academy of Sciences.

[4]  Andrea J Liu,et al.  Machine learning characterization of structural defects in amorphous packings of dimers and ellipses. , 2018, Physical review. E.

[5]  Jiajun Wu,et al.  Learning Particle Dynamics for Manipulating Rigid Bodies, Deformable Objects, and Fluids , 2018, ICLR.

[6]  Raia Hadsell,et al.  Graph networks as learnable physics engines for inference and control , 2018, ICML.

[7]  Jessica B. Hamrick,et al.  Relational inductive biases, deep learning, and graph networks , 2018, ArXiv.

[8]  Samuel S. Schoenholz,et al.  Machine learning determination of atomic dynamics at grain boundaries , 2018, Proceedings of the National Academy of Sciences.

[9]  M. Falk,et al.  Local yield stress statistics in model amorphous solids. , 2018, Physical review. E.

[10]  David L. Dill,et al.  Learning a SAT Solver from Single-Bit Supervision , 2018, ICLR.

[11]  Jennifer M. Rieser,et al.  Structure-property relationships from universal signatures of plasticity in disordered solids , 2017, Science.

[12]  Joan Bruna,et al.  A Note on Learning Algorithms for Quadratic Assignment with Graph Neural Networks , 2017, ArXiv.

[13]  Razvan Pascanu,et al.  A simple neural network module for relational reasoning , 2017, NIPS.

[14]  Elias Boutros Khalil,et al.  Learning Combinatorial Optimization Algorithms over Graphs , 2017, NIPS.

[15]  Razvan Pascanu,et al.  Interaction Networks for Learning about Objects, Relations and Physics , 2016, NIPS.

[16]  Samy Bengio,et al.  Neural Combinatorial Optimization with Reinforcement Learning , 2016, ICLR.

[17]  Joshua B. Tenenbaum,et al.  A Compositional Object-Based Approach to Learning Physical Dynamics , 2016, ICLR.

[18]  Andrea J Liu,et al.  Disconnecting structure and dynamics in glassy thin films , 2016, Proceedings of the National Academy of Sciences.

[19]  Andrea J. Liu,et al.  Structural Properties of Defects in Glassy Liquids. , 2016, The journal of physical chemistry. B.

[20]  Ludovic Berthier,et al.  Equilibrium Sampling of Hard Spheres up to the Jamming Density and Beyond. , 2015, Physical review letters.

[21]  Giorgio Parisi,et al.  Growing timescales and lengthscales characterizing vibrations of amorphous solids , 2015, Proceedings of the National Academy of Sciences.

[22]  Andrea J. Liu,et al.  A structural approach to relaxation in glassy liquids , 2015, Nature Physics.

[23]  Jennifer M. Rieser,et al.  Identifying structural flow defects in disordered solids using machine-learning methods. , 2014, Physical review letters.

[24]  Samuel S. Schoenholz,et al.  Understanding plastic deformation in thermal glasses from single-soft-spot dynamics , 2014, 1404.1403.

[25]  J. P. Garrahan,et al.  Perspective: The glass transition. , 2013, The Journal of chemical physics.

[26]  Ludovic Berthier,et al.  Non-monotonic temperature evolution of dynamic correlations in glass-forming liquids , 2011, Nature Physics.

[27]  J. P. Garrahan,et al.  Excitations Are Localized and Relaxation Is Hierarchical in Glass-Forming Liquids , 2011, 1107.3628.

[28]  D. Rodney,et al.  Modeling the mechanics of amorphous solids at different length scale and time scale , 2011, 1107.2022.

[29]  G. Biroli,et al.  Ideal glass transitions by random pinning , 2011, Proceedings of the National Academy of Sciences.

[30]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[31]  Jonathan K. Kummerfeld,et al.  Spatiotemporal hierarchy of relaxation events, dynamical heterogeneities, and structural reorganization in a supercooled liquid. , 2009, Physical review letters.

[32]  J. P. Garrahan,et al.  Dynamics on the way to forming glass: bubbles in space-time. , 2009, Annual review of physical chemistry.

[33]  P. Harrowell,et al.  On the study of collective dynamics in supercooled liquids through the statistics of the isoconfigurational ensemble. , 2009, The Journal of chemical physics.

[34]  D. Reichman,et al.  Irreversible reorganization in a supercooled liquid originates from localized soft modes , 2008, 0901.3547.

[35]  Florent Krzakala,et al.  Jamming versus glass transitions. , 2008, Physical review letters.

[36]  Ludovic Berthier,et al.  Structure and dynamics of glass formers: predictability at large length scales. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[37]  Sharon C. Glotzer,et al.  Measurement of growing dynamical length scales and prediction of the jamming transition in a granular material , 2007, 1012.4830.

[38]  P. Harrowell,et al.  Predicting the long-time dynamic heterogeneity in a supercooled liquid on the basis of short-time heterogeneities. , 2005, Physical review letters.

[39]  P. Harrowell,et al.  Free volume cannot explain the spatial heterogeneity of Debye–Waller factors in a glass-forming binary alloy , 2005, cond-mat/0511690.

[40]  C. Maloney,et al.  Amorphous systems in athermal, quasistatic shear. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[41]  A. Heuer,et al.  What does the potential energy landscape tell us about the dynamics of supercooled liquids and glasses? , 2003, Physical review letters.

[42]  F. Stillinger,et al.  Supercooled liquids and the glass transition , 2001, Nature.

[43]  Paul F. McMillan,et al.  Relaxation in glassforming liquids and amorphous solids , 2000 .

[44]  S. Glotzer,et al.  Spatial correlations of mobility and immobility in a glass-forming Lennard-Jones liquid. , 1998, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[45]  Srikanth Sastry,et al.  Signatures of distinct dynamical regimes in the energy landscape of a glass-forming liquid , 1998, Nature.

[46]  J. Langer,et al.  Dynamics of viscoplastic deformation in amorphous solids , 1997, cond-mat/9712114.

[47]  Corinna Cortes,et al.  Support-Vector Networks , 1995, Machine Learning.

[48]  C. Angell,et al.  Formation of Glasses from Liquids and Biopolymers , 1995, Science.

[49]  H. C. Andersen,et al.  Testing mode-coupling theory for a supercooled binary Lennard-Jones mixture I: The van Hove correlation function. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[50]  Steve Plimpton,et al.  Fast parallel algorithms for short-range molecular dynamics , 1993 .

[51]  Ah Chung Tsoi,et al.  The Graph Neural Network Model , 2009, IEEE Transactions on Neural Networks.

[52]  Geoffrey E. Hinton,et al.  Visualizing Data using t-SNE , 2008 .