Intraband optical conductivity sigma/omega,T/ of Cu, Ag, and Au - Contribution from electron-electron scattering

The frequency and temperature dependence of the intraband optical conductivity of the noble metals Cu, Ag and Au is measured and contributions of electron-electron scattering are assessed. Optical measurements were performed at temperatures of 77, 295 and 425 K to obtain values of the Drude electron scattering rate with a linear dependence on temperature which may be attributed to electron-phonon scattering, and a quadratic dependence on photon energy, which is suggestive of electron-electron scattering but is a factor of two to three times greater than would be expected. Comparison of the optical data with dc electrical and thermal resistivity data which also show behavior attributed to electron-electron scattering reveals discrepancies of up to an order of magnitude. Other possible mechanisms for the frequency dependence, including absorptance, electron-surface plasmon interactions, a two-carrier model, and a structure dependence are considered, and it is concluded that the frequency dependence in the Drude scattering rates of the noble metals is not yet quantitatively understood