Regulation of transmitter release by Ca2+ and synaptotagmin: insights from a large CNS synapse

[1]  R. Schneggenburger,et al.  Synaptotagmin Increases the Dynamic Range of Synapses by Driving Ca2+-Evoked Release and by Clamping a Near-Linear Remaining Ca2+ Sensor , 2011, Neuron.

[2]  T. Südhof,et al.  RIM Determines Ca2+ Channel Density and Vesicle Docking at the Presynaptic Active Zone , 2011, Neuron.

[3]  Thomas C. Südhof,et al.  RIM Proteins Tether Ca2+ Channels to Presynaptic Active Zones via a Direct PDZ-Domain Interaction , 2011, Cell.

[4]  E. Neher Complexin: Does It Deserve Its Name? , 2010, Neuron.

[5]  T. Südhof,et al.  Complexin Clamps Asynchronous Release by Blocking a Secondary Ca2+ Sensor via Its Accessory α Helix , 2010, Neuron.

[6]  T. Sakaba,et al.  cAMP modulates intracellular Ca2+ sensitivity of fast-releasing synaptic vesicles at the calyx of Held synapse. , 2010, Journal of neurophysiology.

[7]  Andrea Burgalossi,et al.  SNARE Protein Recycling by αSNAP and βSNAP Supports Synaptic Vesicle Priming , 2010, Neuron.

[8]  E. Neher,et al.  Fast Vesicle Fusion in Living Cells Requires at Least Three SNARE Complexes , 2010, Science.

[9]  T. Südhof,et al.  Calmodulin Suppresses Synaptotagmin-2 Transcription in Cortical Neurons* , 2010, The Journal of Biological Chemistry.

[10]  R. Schneggenburger,et al.  Developmental expression of Synaptotagmin isoforms in single calyx of Held-generating neurons , 2010, Molecular and Cellular Neuroscience.

[11]  Zhiping P Pang,et al.  Cell biology of Ca2+-triggered exocytosis. , 2010, Current opinion in cell biology.

[12]  C. Ackerley,et al.  Septins Regulate Developmental Switching from Microdomain to Nanodomain Coupling of Ca2+ Influx to Neurotransmitter Release at a Central Synapse , 2010, Neuron.

[13]  H. V. Gersdorff,et al.  Developmental shift to a mechanism of synaptic vesicle endocytosis requiring nanodomain Ca2+ , 2010, Nature Neuroscience.

[14]  I. Gemp,et al.  Quantitative analysis of synaptic release at the photoreceptor synapse. , 2010, Biophysical journal.

[15]  L. Niels Cornelisse,et al.  Doc2b Is a High-affinity Ca 2+ Sensor for Spontaneous Neurotransmitter Release , 2022 .

[16]  F. Wouters,et al.  One SNARE complex is sufficient for membrane fusion , 2010, Nature Structural &Molecular Biology.

[17]  Jeannette A. M. Lorteije,et al.  Reliability and Precision of the Mouse Calyx of Held Synapse , 2009, The Journal of Neuroscience.

[18]  E. Neher,et al.  Synaptotagmin Has an Essential Function in Synaptic Vesicle Positioning for Synchronous Release in Addition to Its Role as a Calcium Sensor , 2009, Neuron.

[19]  Jianhua Xu,et al.  Ca2+ and calmodulin initiate all forms of endocytosis during depolarization at a nerve terminal , 2009, Nature Neuroscience.

[20]  T. Sakaba,et al.  Calcium Dependence of Exo- and Endocytotic Coupling at a Glutamatergic Synapse , 2009, Neuron.

[21]  Edwin R. Chapman,et al.  Autapses and Networks of Hippocampal Neurons Exhibit Distinct Synaptic Transmission Phenotypes in the Absence of Synaptotagmin I , 2009, The Journal of Neuroscience.

[22]  R. Schneggenburger,et al.  Developmental regulation of the intracellular Ca2+ sensitivity of vesicle fusion and Ca2+–secretion coupling at the rat calyx of Held , 2009, The Journal of physiology.

[23]  R. Zucker,et al.  A General Model of Synaptic Transmission and Short-Term Plasticity , 2009, Neuron.

[24]  Jianhua Xu,et al.  Compound vesicle fusion increases quantal size and potentiates synaptic transmission , 2009, Nature.

[25]  Zhiping P. Pang,et al.  Synaptotagmin-1 functions as the Ca2+-sensor for spontaneous release , 2009, Nature Neuroscience.

[26]  E. Neher,et al.  Synaptic Vesicles in Mature Calyx of Held Synapses Sense Higher Nanodomain Calcium Concentrations during Action Potential-Evoked Glutamate Release , 2008, The Journal of Neuroscience.

[27]  J. Rizo,et al.  The Janus-Faced Nature of the C2B Domain Is Fundamental for Synaptotagmin-1 Function , 2008, Nature Structural &Molecular Biology.

[28]  Takeshi Sakaba,et al.  Multiple Roles of Calcium Ions in the Regulation of Neurotransmitter Release , 2008, Neuron.

[29]  Nils Brose,et al.  Phorbol Esters Modulate Spontaneous and Ca2+-Evoked Transmitter Release via Acting on Both Munc13 and Protein Kinase C , 2008, The Journal of Neuroscience.

[30]  T. Sakaba Two Ca2+-Dependent Steps Controlling Synaptic Vesicle Fusion and Replenishment at the Cerebellar Basket Cell Terminal , 2008, Neuron.

[31]  P. Jonas,et al.  Differential Gating and Recruitment of P/Q-, N-, and R-Type Ca2+ Channels in Hippocampal Mossy Fiber Boutons , 2007, The Journal of Neuroscience.

[32]  E. Neher,et al.  Kinetics of both synchronous and asynchronous quantal release during trains of action potential‐evoked EPSCs at the rat calyx of Held , 2007, The Journal of physiology.

[33]  T. Südhof,et al.  A dual-Ca2+-sensor model for neurotransmitter release in a central synapse , 2007, Nature.

[34]  L. Lagnado,et al.  Modes of Vesicle Retrieval at Ribbon Synapses, Calyx-Type Synapses, and Small Central Synapses , 2007, The Journal of Neuroscience.

[35]  R. Schneggenburger,et al.  Posttetanic potentiation critically depends on an enhanced Ca2+ sensitivity of vesicle fusion mediated by presynaptic PKC , 2007, Proceedings of the National Academy of Sciences.

[36]  J. Littleton,et al.  A complexin fusion clamp regulates spontaneous neurotransmitter release and synaptic growth , 2007, Nature Neuroscience.

[37]  J. Sanes,et al.  Synaptotagmin I and II are present in distinct subsets of central synapses , 2007, The Journal of comparative neurology.

[38]  T. Südhof,et al.  Synaptotagmin-1, -2, and -9: Ca2+ Sensors for Fast Release that Specify Distinct Presynaptic Properties in Subsets of Neurons , 2007, Neuron.

[39]  M. Verhage,et al.  Interdependence of PKC-Dependent and PKC-Independent Pathways for Presynaptic Plasticity , 2007, Neuron.

[40]  R. Schneggenburger,et al.  A Mechanism Intrinsic to the Vesicle Fusion Machinery Determines Fast and Slow Transmitter Release at a Large CNS Synapse , 2007, The Journal of Neuroscience.

[41]  R. Schneggenburger,et al.  Parvalbumin Is a Mobile Presynaptic Ca2+ Buffer in the Calyx of Held that Accelerates the Decay of Ca2+ and Short-Term Facilitation , 2007, The Journal of Neuroscience.

[42]  Takeshi Sakaba,et al.  The Coupling between Synaptic Vesicles and Ca2+ Channels Determines Fast Neurotransmitter Release , 2007, Neuron.

[43]  Christian Rosenmund,et al.  Munc13-1 C1 Domain Activation Lowers the Energy Barrier for Synaptic Vesicle Fusion , 2007, The Journal of Neuroscience.

[44]  T. Südhof,et al.  Synaptotagmin-2 Is Essential for Survival and Contributes to Ca2+ Triggering of Neurotransmitter Release in Central and Neuromuscular Synapses , 2006, The Journal of Neuroscience.

[45]  Helmut Grubmüller,et al.  Molecular Anatomy of a Trafficking Organelle , 2006, Cell.

[46]  T. Südhof,et al.  Genetic analysis of synaptotagmin 2 in spontaneous and Ca2+‐triggered neurotransmitter release , 2006, The EMBO journal.

[47]  T. Südhof,et al.  Autonomous Function of Synaptotagmin 1 in Triggering Synchronous Release Independent of Asynchronous Release , 2005, Neuron.

[48]  E. Neher,et al.  Release kinetics, quantal parameters and their modulation during short‐term depression at a developing synapse in the rat CNS , 2005, The Journal of physiology.

[49]  Stefan Hefft,et al.  Asynchronous GABA release generates long-lasting inhibition at a hippocampal interneuron–principal neuron synapse , 2005, Nature Neuroscience.

[50]  W. Ho,et al.  Interplay between Na+/Ca2+ Exchangers and Mitochondria in Ca2+ Clearance at the Calyx of Held , 2005, The Journal of Neuroscience.

[51]  E. Neher,et al.  Presynaptic calcium and control of vesicle fusion , 2005, Current Opinion in Neurobiology.

[52]  R. Schneggenburger,et al.  Allosteric modulation of the presynaptic Ca2+ sensor for vesicle fusion , 2005, Nature.

[53]  R. Schneggenburger,et al.  Presynaptic Ca2+ Requirements and Developmental Regulation of Posttetanic Potentiation at the Calyx of Held , 2005, The Journal of Neuroscience.

[54]  Lu-Yang Wang,et al.  Developmental Transformation of the Release Modality at the Calyx of Held Synapse , 2005, The Journal of Neuroscience.

[55]  Johann H. Bollmann,et al.  Control of synaptic strength and timing by the release-site Ca2+ signal , 2005, Nature Neuroscience.

[56]  A. Marty,et al.  Developmental Changes in Parvalbumin Regulate Presynaptic Ca2+ Signaling , 2005, The Journal of Neuroscience.

[57]  V. Wimmer,et al.  Targeted in vivo expression of proteins in the calyx of Held , 2004, Pflügers Archiv.

[58]  George J. Augustine,et al.  Synaptotagmin I Synchronizes Transmitter Release in Mouse Hippocampal Neurons , 2004, The Journal of Neuroscience.

[59]  T. Südhof The synaptic vesicle cycle , 2004 .

[60]  K. Rábl,et al.  A Highly Ca2+-Sensitive Pool of Vesicles Contributes to Linearity at the Rod Photoreceptor Ribbon Synapse , 2004, Neuron.

[61]  Felix Felmy,et al.  Probing the Intracellular Calcium Sensitivity of Transmitter Release during Synaptic Facilitation , 2003, Neuron.

[62]  G. Spirou,et al.  Optimizing Synaptic Architecture and Efficiency for High-Frequency Transmission , 2002, Neuron.

[63]  J. Littleton,et al.  Synaptotagmin I Functions as a Calcium Sensor to Synchronize Neurotransmitter Release , 2002, Neuron.

[64]  Edwin R. Chapman,et al.  Synaptotagmin: A Ca2+ sensor that triggers exocytosis? , 2002, Nature Reviews Molecular Cell Biology.

[65]  Thomas C. Südhof,et al.  β Phorbol Ester- and Diacylglycerol-Induced Augmentation of Transmitter Release Is Mediated by Munc13s and Not by PKCs , 2002, Cell.

[66]  T. Südhof,et al.  Three-Dimensional Structure of the Synaptotagmin 1 C2B-Domain Synaptotagmin 1 as a Phospholipid Binding Machine , 2001, Neuron.

[67]  Richard H. Scheller,et al.  SNARE-mediated membrane fusion , 2001, Nature Reviews Molecular Cell Biology.

[68]  Alan Fine,et al.  Calcium Stores in Hippocampal Synaptic Boutons Mediate Short-Term Plasticity, Store-Operated Ca2+ Entry, and Spontaneous Transmitter Release , 2001, Neuron.

[69]  E. Neher,et al.  Combining Deconvolution and Noise Analysis for the Estimation of Transmitter Release Rates at the Calyx of Held , 2001, The Journal of Neuroscience.

[70]  A. Marty,et al.  Presynaptic calcium stores underlie large-amplitude miniature IPSCs and spontaneous calcium transients , 2000, Nature Neuroscience.

[71]  Ralf Schneggenburger,et al.  Intracellular calcium dependence of transmitter release rates at a fast central synapse , 2000, Nature.

[72]  B Sakmann,et al.  Calcium sensitivity of glutamate release in a calyx-type terminal. , 2000, Science.

[73]  L. Trussell,et al.  Inhibitory Transmission Mediated by Asynchronous Transmitter Release , 2000, Neuron.

[74]  A. C. Meyer,et al.  Released Fraction and Total Size of a Pool of Immediately Available Transmitter Quanta at a Calyx Synapse , 1999, Neuron.

[75]  H. Yawo Two components of transmitter release from the chick ciliary presynaptic terminal and their regulation by protein kinase C , 1999, The Journal of physiology.

[76]  H. Yawo Protein kinase C potentiates transmitter release from the chick ciliary presynaptic terminal by increasing the exocytotic fusion probability , 1999, The Journal of physiology.

[77]  W. Regehr,et al.  Delayed Release of Neurotransmitter from Cerebellar Granule Cells , 1998, The Journal of Neuroscience.

[78]  E Neher,et al.  Two-dimensional determination of the cellular Ca2+ binding in bovine chromaffin cells. , 1998, Biophysical journal.

[79]  E. Neher Vesicle Pools and Ca2+ Microdomains: New Tools for Understanding Their Roles in Neurotransmitter Release , 1998, Neuron.

[80]  B Sakmann,et al.  Calcium current during a single action potential in a large presynaptic terminal of the rat brainstem , 1998, The Journal of physiology.

[81]  W. N. Zagotta,et al.  Cyclic nucleotide-gated channels: structural basis of ligand efficacy and allosteric modulation , 1997, Quarterly Reviews of Biophysics.

[82]  B. Sakmann,et al.  Calcium dynamics associated with a single action potential in a CNS presynaptic terminal. , 1997, Biophysical journal.

[83]  T. Südhof,et al.  DOC2 Proteins in Rat Brain: Complementary Distribution and Proposed Function as Vesicular Adapter Proteins in Early Stages of Secretion , 1997, Neuron.

[84]  B. Sakmann,et al.  Calcium influx and transmitter release in a fast CNS synapse , 1996, Nature.

[85]  Christian Rosenmund,et al.  Definition of the Readily Releasable Pool of Vesicles at Hippocampal Synapses , 1996, Neuron.

[86]  B. Sakmann,et al.  Pre‐ and postsynaptic whole‐cell recordings in the medial nucleus of the trapezoid body of the rat. , 1995, The Journal of physiology.

[87]  S. Seino,et al.  Cellular localization of synaptotagmin I, II, and III mRNAs in the central nervous system and pituitary and adrenal glands of the rat , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[88]  W G Regehr,et al.  Calcium transients in cerebellar granule cell presynaptic terminals. , 1995, Biophysical journal.

[89]  Y. Goda,et al.  Two components of transmitter release at a central synapse. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[90]  R S Zucker,et al.  Kinetics of the secretory response in bovine chromaffin cells following flash photolysis of caged Ca2+. , 1994, Biophysical journal.

[91]  T. Südhof,et al.  Synaptotagmin I: A major Ca2+ sensor for transmitter release at a central synapse , 1994, Cell.

[92]  J. Littleton,et al.  Calcium dependence of neurotransmitter release and rate of spontaneous vesicle fusions are altered in Drosophila synaptotagmin mutants. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[93]  Gary Matthews,et al.  Calcium dependence of the rate of exocytosis in a synaptic terminal , 1994, Nature.

[94]  D W Tank,et al.  A quantitative measurement of the dependence of short-term synaptic enhancement on presynaptic residual calcium , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[95]  M B Jackson,et al.  Single channel currents in the nicotinic acetylcholine receptor: a direct demonstration of allosteric transitions. , 1994, Trends in biochemical sciences.

[96]  I. Forsythe,et al.  Direct patch recording from identified presynaptic terminals mediating glutamatergic EPSCs in the rat CNS, in vitro. , 1994, The Journal of physiology.

[97]  W A Roberts Localization of calcium signals by a mobile calcium buffer in frog saccular hair cells , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[98]  D. Madison,et al.  Phorbol esters enhance synaptic transmission by a presynaptic, calcium‐dependent mechanism in rat hippocampus. , 1993, The Journal of physiology.

[99]  W. Almers,et al.  A low affinity Ca2+ receptor controls the final steps in peptide secretion from pituitary melanotrophs , 1993, Neuron.

[100]  R. Mulkey,et al.  Calcium released by photolysis of DM‐nitrophen triggers transmitter release at the crayfish neuromuscular junction. , 1993, The Journal of physiology.

[101]  W. Yamada,et al.  Time course of transmitter release calculated from simulations of a calcium diffusion model. , 1992, Biophysical journal.

[102]  R. Llinás,et al.  Compartmentalization of the submembrane calcium activity during calcium influx and its significance in transmitter release. , 1985, Biophysical journal.

[103]  R. Eckert,et al.  Calcium domains associated with individual channels can account for anomalous voltage relations of CA-dependent responses. , 1984, Biophysical journal.

[104]  J. Changeux,et al.  ON THE NATURE OF ALLOSTERIC TRANSITIONS: A PLAUSIBLE MODEL. , 1965, Journal of molecular biology.

[105]  B. Katz,et al.  Spontaneous subthreshold activity at motor nerve endings , 1952, The Journal of physiology.

[106]  J. Foreman,et al.  Textbook of Receptor Pharmacology , 2011 .

[107]  T. Südhof,et al.  Cell biology of Ca 2+ -triggered exocytosis , 2010 .

[108]  G. Ellis‐Davies Development and application of caged calcium. , 2003, Methods in enzymology.

[109]  Thorsten Lang,et al.  Membrane fusion. , 2002, Current opinion in cell biology.

[110]  D. Jenkinson Classical approaches to the study of drug-receptor interactions , 2002 .

[111]  S. Silberberg,et al.  Activation of protein kinase C augments evoked transmitter release , 1987, Nature.

[112]  J. Mitchison Cell Biology , 1964, Nature.