Kohn-Sham Decomposition in Real-Time Time-Dependent Density-Functional Theory: An Efficient Tool for Analyzing Plasmonic Excitations.

Electronic excitations can be efficiently analyzed in terms of the underlying Kohn-Sham (KS) electron-hole transitions. While such a decomposition is readily available in the linear-response time-dependent density-functional theory (TDDFT) approaches based on the Casida equations, a comparable analysis is less commonly conducted within the real-time-propagation TDDFT (RT-TDDFT). To improve this situation, we present here an implementation of a KS decomposition tool within the local-basis-set RT-TDDFT code in the free GPAW package. Our implementation is based on postprocessing of data that is readily available during time propagation, which is important for retaining the efficiency of the underlying RT-TDDFT to large systems. After benchmarking our implementation on small benzene derivatives by explicitly reconstructing the Casida eigenvectors from RT-TDDFT, we demonstrate the performance of the method by analyzing the plasmon resonances of icosahedral silver nanoparticles up to Ag561. The method provides a clear description of the splitting of the plasmon in small nanoparticles due to individual single-electron transitions as well as the formation of a distinct d-electron-screened plasmon resonance in larger nanoparticles.

[1]  O. Sugino,et al.  Modified linear response for time-dependent density-functional theory: Application to Rydberg and charge-transfer excitations , 2006 .

[2]  R. Ahlrichs,et al.  Treatment of electronic excitations within the adiabatic approximation of time dependent density functional theory , 1996 .

[3]  G. Bryant,et al.  Which resonances in small metallic nanoparticles are plasmonic? , 2014, 1408.1895.

[4]  John D. Hunter,et al.  Matplotlib: A 2D Graphics Environment , 2007, Computing in Science & Engineering.

[5]  S. Malola,et al.  Copper Induces a Core Plasmon in Intermetallic Au(144,145)-xCux(SR)60 Nanoclusters. , 2015, The journal of physical chemistry letters.

[6]  S. Meng,et al.  Quantum Mode Selectivity of Plasmon-Induced Water Splitting on Gold Nanoparticles. , 2016, ACS nano.

[7]  M. Wubs,et al.  Projected Dipole Model for Quantum Plasmonics. , 2015, Physical review letters.

[8]  D. Pines A Collective Description of Electron Interactions: II. Collective vs Individual Particle Aspects of the Interactions , 1952 .

[9]  Jun Yan,et al.  End and central plasmon resonances in linear atomic chains. , 2007, Physical review letters.

[10]  V. A. Apkarian,et al.  Surface-enhanced Raman trajectories on a nano-dumbbell: transition from field to charge transfer plasmons as the spheres fuse. , 2012, ACS nano.

[11]  Lin Wu,et al.  Quantum Plasmon Resonances Controlled by Molecular Tunnel Junctions , 2014, Science.

[12]  Angel Rubio,et al.  Performance of nonlocal optics when applied to plasmonic nanostructures , 2013 .

[13]  M. Petersilka,et al.  Excitation energies from time-dependent density-functional theory. , 1996 .

[14]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[15]  K. Jacobsen,et al.  Plasmons on the edge of MoS 2 nanostructures , 2014, 1503.00538.

[16]  Liebsch Surface-plasmon dispersion and size dependence of Mie resonance: Silver versus simple metals. , 1993, Physical review. B, Condensed matter.

[17]  Remco W. A. Havenith,et al.  Gold Nanowires: A Time-Dependent Density Functional Assessment of Plasmonic Behavior , 2013 .

[18]  Jennifer A. Dionne,et al.  Observation of quantum tunneling between two plasmonic nanoparticles. , 2013, Nano letters.

[19]  John E. Stone,et al.  An efficient library for parallel ray tracing and animation , 1998 .

[20]  C. Ullrich,et al.  Time-dependent transition density matrix , 2011 .

[21]  J. Aizpurua,et al.  Tracking Optical Welding through Groove Modes in Plasmonic Nanocavities. , 2016, Nano letters.

[22]  S. Kümmel,et al.  Self-interaction correction in a real-time Kohn-Sham scheme: access to difficult excitations in time-dependent density functional theory. , 2012, The Journal of chemical physics.

[23]  E. Baerends,et al.  Self-consistent approximation to the Kohn-Sham exchange potential. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[24]  C. Aikens,et al.  Quantum mechanical origin of the plasmon: from molecular systems to nanoparticles. , 2014, Nanoscale.

[25]  Bradley F. Habenicht,et al.  Peak-shifting in real-time time-dependent density functional theory. , 2015, Journal of chemical theory and computation.

[26]  Carsten A. Ullrich,et al.  Time-Dependent Density-Functional Theory: Concepts and Applications , 2012 .

[27]  Kristian Sommer Thygesen,et al.  Localized atomic basis set in the projector augmented wave method , 2009, 1303.0348.

[28]  C. Aikens,et al.  Time-Dependent Density Functional Theory Studies of Optical Properties of Au Nanoparticles: Octahedra, Truncated Octahedra, and Icosahedra , 2012 .

[29]  Wenqi Zhu,et al.  Quantum mechanical effects in plasmonic structures with subnanometre gaps , 2016, Nature Communications.

[30]  Alejandro Manjavacas,et al.  Quantum Effects in Charge Transfer Plasmons , 2015 .

[31]  A. Fortunelli,et al.  Optical Properties of Silver Nanoshells from Time-Dependent Density Functional Theory Calculations , 2014 .

[32]  Garnett W. Bryant,et al.  Plasmonic properties of metallic nanoparticles: The effects of size quantization , 2010, CLEO: 2011 - Laser Science to Photonic Applications.

[33]  Manninen,et al.  Electronic polarizability of small metal spheres. , 1985, Physical review. B, Condensed matter.

[34]  E. Gross,et al.  Density-Functional Theory for Time-Dependent Systems , 1984 .

[35]  Lasse Jensen,et al.  Theoretical studies of plasmonics using electronic structure methods. , 2011, Chemical reviews.

[36]  M. Pettersson,et al.  Covalently linked multimers of gold nanoclusters Au102(p-MBA)44 and Au∼250(p-MBA)n. , 2016, Nanoscale.

[37]  P. Nordlander,et al.  Quantum plasmonics: Symmetry-dependent plasmon-molecule coupling and quantized photoconductances , 2012 .

[38]  T. Zeng,et al.  First-Principles Study and Model of Dielectric Functions of Silver Nanoparticles , 2010 .

[39]  A. Dreuw,et al.  Identification of Plasmons in Molecules with Scaled Ab Initio Approaches , 2015 .

[40]  Takashi Nakatsukasa,et al.  Real‐time, real‐space implementation of the linear response time‐dependent density‐functional theory , 2006 .

[41]  K. Lopata,et al.  Accelerated Broadband Spectra Using Transition Dipole Decomposition and Padé Approximants. , 2016, Journal of chemical theory and computation.

[42]  Karsten W. Jacobsen,et al.  An object-oriented scripting interface to a legacy electronic structure code , 2002, Comput. Sci. Eng..

[43]  Michael J. McClain,et al.  Al-Pd Nanodisk Heterodimers as Antenna-Reactor Photocatalysts. , 2016, Nano letters.

[44]  R. T. Hill,et al.  Probing the Ultimate Limits of Plasmonic Enhancement , 2012, Science.

[45]  R. Gebauer,et al.  Efficient approach to time-dependent density-functional perturbation theory for optical spectroscopy. , 2005, Physical review letters.

[46]  J. Baumberg,et al.  Tracking Optical and Electronic Behaviour of Quantum Contacts in Sub-Nanometre Plasmonic Cavities , 2016, Scientific Reports.

[47]  G. Schatz,et al.  From Discrete Electronic States to Plasmons: TDDFT Optical Absorption Properties of Agn(n= 10, 20, 35, 56, 84, 120) Tetrahedral Clusters , 2008 .

[48]  Andrey K. Kazansky,et al.  Electron tunneling through water layer in nanogaps probed by plasmon resonances , 2016 .

[49]  A. Borisov,et al.  Plasmon Response and Electron Dynamics in Charged Metallic Nanoparticles. , 2016, Langmuir : the ACS journal of surfaces and colloids.

[50]  J. A. Alonso,et al.  Lifetime of electronic excitations in metal nanoparticles , 2010 .

[51]  T. T. Rantala,et al.  Kohn-Sham potential with discontinuity for band gap materials , 2010, 1003.0296.

[52]  Stefan A. Maier,et al.  Quantum Plasmonics , 2016, Proceedings of the IEEE.

[53]  Liebsch Surface plasmon dispersion of Ag. , 1993, Physical review letters.

[54]  V. Toșa,et al.  Modeling laser induced molecule excitation using real-time time-dependent density functional theory: application to 5- and 6-benzyluracil. , 2015, Physical chemistry chemical physics : PCCP.

[55]  K. Ishimura,et al.  First-principles computational visualization of localized surface plasmon resonance in gold nanoclusters. , 2014, The journal of physical chemistry. A.

[56]  M. E. Casida Time-Dependent Density Functional Response Theory for Molecules , 1995 .

[57]  Jun Yan,et al.  Conventional and acoustic surface plasmons on noble metal surfaces: a time-dependent density functional theory study , 2012, 1212.3011.

[58]  F. Rabilloud Description of plasmon-like band in silver clusters: the importance of the long-range Hartree-Fock exchange in time-dependent density-functional theory simulations. , 2014, The Journal of chemical physics.

[59]  C. Mottet,et al.  Optical properties of pure and core-shell noble-metal nanoclusters from TDDFT: The influence of the atomic structure , 2011 .

[60]  Bertsch,et al.  Time-dependent local-density approximation in real time. , 1996, Physical review. B, Condensed matter.

[61]  K. Burke,et al.  Generalized Gradient Approximation Made Simple [Phys. Rev. Lett. 77, 3865 (1996)] , 1997 .

[62]  J. M. Matxain,et al.  Plasmonic Resonances in the Al13– Cluster: Quantification and Origin of Exciton Collectivity , 2016 .

[63]  Rubió,et al.  Temperature effects on the optical absorption of jellium clusters. , 1990, Physical review. B, Condensed matter.

[64]  A. Calzolari,et al.  Photoabsorption of Icosahedral Noble Metal Clusters: An Efficient TDDFT Approach to Large-Scale Systems , 2016 .

[65]  K. Ruud,et al.  Excitation Energies from Real-Time Propagation of the Four-Component Dirac-Kohn-Sham Equation. , 2015, Journal of chemical theory and computation.

[66]  R. Nieminen,et al.  Quantized Evolution of the Plasmonic Response in a Stretched Nanorod. , 2015, Physical review letters.

[67]  K. Jacobsen,et al.  First-principles study of surface plasmons on Ag(111) and H/Ag(111) , 2011 .

[68]  K. Meiwes-Broer,et al.  Blue shift of the Mie plasma frequency in Ag clusters and particles. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[69]  Carsten A. Ullrich,et al.  The Particle-Hole Map: A Computational Tool To Visualize Electronic Excitations. , 2015, Journal of chemical theory and computation.

[70]  P. Nordlander,et al.  Quantum mechanical study of the coupling of plasmon excitations to atomic-scale electron transport. , 2011, The Journal of chemical physics.

[71]  E. Gross,et al.  Fundamentals of time-dependent density functional theory , 2012 .

[72]  S. Lehtola,et al.  Nanoplasmonics simulations at the basis set limit through completeness-optimized, local numerical basis sets. , 2015, The Journal of chemical physics.

[73]  Hannu Häkkinen,et al.  Time-dependent density-functional theory in the projector augmented-wave method. , 2008, The Journal of chemical physics.

[74]  Christine M Aikens,et al.  Quantum coherent plasmon in silver nanowires: a real-time TDDFT study. , 2014, The Journal of chemical physics.

[75]  Emil Prodan,et al.  Electronic Structure and Optical Properties of Gold Nanoshells , 2003 .

[76]  Gaël Varoquaux,et al.  The NumPy Array: A Structure for Efficient Numerical Computation , 2011, Computing in Science & Engineering.

[77]  G. Scuseria,et al.  An efficient implementation of time-dependent density-functional theory for the calculation of excitation energies of large molecules , 1998 .

[78]  N. A. Romero,et al.  Electronic structure calculations with GPAW: a real-space implementation of the projector augmented-wave method , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[79]  J. Dionne,et al.  Quantum plasmon resonances of individual metallic nanoparticles , 2012, Nature.

[80]  M. Stener,et al.  A new time dependent density functional algorithm for large systems and plasmons in metal clusters. , 2015, The Journal of chemical physics.

[81]  Javier Fdez. Sanz,et al.  Simulating the optical properties of CdSe clusters using the RT-TDDFT approach , 2013, Theoretical Chemistry Accounts.

[82]  A. Borisov,et al.  Atomistic near-field nanoplasmonics: reaching atomic-scale resolution in nanooptics. , 2015, Nano letters.

[83]  Daniel Sánchez-Portal,et al.  Optical response of silver clusters and their hollow shells from linear-response TDDFT , 2015, Journal of physics. Condensed matter : an Institute of Physics journal.

[84]  Hellmut Haberland,et al.  Looking from both sides , 2013, Nature.

[85]  Hans-Christian Weissker,et al.  Surface plasmons in quantum-sized noble-metal clusters: TDDFT quantum calculations and the classical picture of charge oscillations. , 2015, Physical chemistry chemical physics : PCCP.

[86]  Á. Rubio,et al.  Anisotropy Effects on the Plasmonic Response of Nanoparticle Dimers. , 2015, The journal of physical chemistry letters.

[87]  Brack,et al.  Fragmentation of the photoabsorption strength in neutral and charged metal microclusters. , 1989, Physical review letters.

[88]  Antti-Pekka Jauho,et al.  Quantum Corrections in Nanoplasmonics: Shape, Scale, and Material. , 2016, Physical review letters.

[89]  N. Mortensen,et al.  Multipole plasmons and their disappearance in few-nanometre silver nanoparticles , 2015, Nature Communications.

[90]  A. Borisov,et al.  Quantum plasmonics: nonlinear effects in the field enhancement of a plasmonic nanoparticle dimer. , 2012, Nano letters.

[91]  W. Ekardt,et al.  Dynamical Polarizability of Small Metal Particles: Self-Consistent Spherical Jellium Background Model , 1984 .

[92]  Michael Walter,et al.  The atomic simulation environment-a Python library for working with atoms. , 2017, Journal of physics. Condensed matter : an Institute of Physics journal.

[93]  Emil Prodan,et al.  Quantum plasmonics: optical properties and tunability of metallic nanorods. , 2010, ACS nano.

[94]  Efthimios Kaxiras,et al.  Real-Time TD-DFT with Classical Ion Dynamics: Methodology and Applications. , 2016, Journal of chemical theory and computation.

[95]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[96]  Dmitri A Romanov,et al.  A time-dependent Hartree-Fock approach for studying the electronic optical response of molecules in intense fields. , 2005, Physical chemistry chemical physics : PCCP.

[97]  Lasse Jensen,et al.  Atomistic electrodynamics simulations of bare and ligand-coated nanoparticles in the quantum size regime , 2015, Nature Communications.

[98]  Ricardo A. Broglia,et al.  Landau damping and wall dissipation in large metal clusters , 1992 .

[99]  Guang-Yu Guo,et al.  Plasmonic excitations in quantum-sized sodium nanoparticles studied by time-dependent density functional calculations , 2013, 1307.3631.

[100]  Gross,et al.  Excitation energies from time-dependent density-functional theory. , 1996, Physical review letters.

[101]  M. Hayashi,et al.  Collectivity of plasmonic excitations in small sodium clusters with ring and linear structures , 2011 .

[102]  V. A. Apkarian,et al.  Raman Staircase in Charge Transfer SERS at the Junction of Fusing Nanospheres. , 2013, The journal of physical chemistry letters.

[103]  Zhe Yuan,et al.  Emergence of collective plasmon excitation in a confined one-dimensional electron gas , 2005 .

[104]  Mark E. Casida,et al.  Time-dependent density-functional theory for molecules and molecular solids , 2009 .

[105]  L. Lehtovaara,et al.  TDDFT Analysis of Optical Properties of Thiol Monolayer-Protected Gold and Intermetallic Silver–Gold Au144(SR)60 and Au84Ag60(SR)60 Clusters , 2014 .

[106]  K. Jacobsen,et al.  Real-space grid implementation of the projector augmented wave method , 2004, cond-mat/0411218.

[107]  Javier Aizpurua,et al.  Plasmonic Response of Metallic Nanojunctions Driven by Single Atom Motion: Quantum Transport Revealed in Optics , 2016 .

[108]  Xavier Andrade,et al.  Time-dependent density functional theory scheme for efficient calculations of dynamic (hyper)polarizabilities. , 2007, The Journal of chemical physics.

[109]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[110]  Angel Rubio,et al.  Ab initio nanoplasmonics: The impact of atomic structure , 2014 .

[111]  P. Nordlander,et al.  Tunable molecular plasmons in polycyclic aromatic hydrocarbons. , 2013, ACS nano.

[112]  Ekardt Size-dependent photoabsorption and photoemission of small metal particles. , 1985, Physical review. B, Condensed matter.

[113]  Lin-wang Wang,et al.  Interplay between plasmon and single-particle excitations in a metal nanocluster , 2015, Nature Communications.

[114]  Arrigo Calzolari,et al.  Quantifying the plasmonic character of optical excitations in nanostructures , 2015, 1510.02308.

[115]  G. Kresse,et al.  Macroscopic dielectric function within time-dependent density functional theory-Real time evolution versus the Casida approach. , 2017, The Journal of chemical physics.

[116]  Emil Prodan,et al.  Quantum description of the plasmon resonances of a nanoparticle dimer. , 2009, Nano letters.

[117]  Beck Self-consistent calculation of the eigenfrequencies for the electronic excitations in small jellium spheres. , 1987, Physical review. B, Condensed matter.

[118]  C. Aikens,et al.  Theoretical analysis of the optical excitation spectra of silver and gold nanowires. , 2012, Nanoscale.

[119]  J. Ferguson,et al.  VAPOR ABSORPTION SPECTRA AND OSCILLATOR STRENGTHS OF NAPHTHALENE, ANTHRACENE, AND PYRENE , 1957 .

[120]  C. Ciracì,et al.  Quantum Hydrodynamic Theory for Plasmonics: Impact of the Electron Density Tail , 2016, 1601.01584.

[121]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[122]  Yannouleas,et al.  Collective and single-particle aspects in the optical response of metal microclusters. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[123]  P. Wilkinson ABSORPTION SPECTRA OF BENZENE AND BENZENE-d6 IN THE VACUUM ULTRAVIOLET , 1956 .

[124]  Christoph R. Jacob,et al.  Plasmons in Molecules , 2013 .

[125]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[126]  Jeremy J. Baumberg,et al.  Revealing the quantum regime in tunnelling plasmonics , 2012, Nature.

[127]  Javier Aizpurua,et al.  Bridging quantum and classical plasmonics with a quantum-corrected model , 2012, Nature Communications.

[128]  Vicki J. Keast,et al.  TDDFT Study of the Optical Absorption Spectra of Bare Gold Clusters , 2014 .

[129]  J. Enkovaara,et al.  Birth of the localized surface plasmon resonance in monolayer-protected gold nanoclusters. , 2013, ACS nano.

[130]  Á. Rubio,et al.  Quantum plasmonics: from jellium models to ab initio calculations , 2016 .

[131]  Jussi Enkovaara,et al.  Localized surface plasmon resonance in silver nanoparticles: Atomistic first-principles time-dependent density-functional theory calculations , 2015, 1503.07234.

[132]  K. Thygesen,et al.  Plasmons in metallic monolayer and bilayer transition metal dichalcogenides , 2013, 1311.0158.