TiO2 nanotube arrays grown in ionic liquids: high-efficiency in photocatalysis and pore-widening

Debris-free, long, well-separated TiO2 nanotube arrays were obtained using an ionic liquid (IL) as electrolyte. The high conductivity of IL resulted in fast pore widening and few contaminants from electrolyte decomposition leading to high photocatalytic efficiency in water splitting.

[1]  C. Grimes,et al.  Self-assembled anodic TiO2 nanotube arrays: electrolyte properties and their effect on resulting morphologies , 2011 .

[2]  S. Mitra,et al.  Anodic growth of large-diameter multipodal TiO2 nanotubes. , 2010, ACS nano.

[3]  Y. Xing,et al.  Fabrication of open‐ended TiO2 nanotube arrays by a simple two‐step anodization , 2010 .

[4]  Srimala Sreekantan,et al.  Fast-rate formation of TiO2 nanotube arrays in an organic bath and their applications in photocatalysis. , 2010, Nanotechnology.

[5]  S. Fujimoto,et al.  TiO2 Nanotubes – Annealing Effects on Detailed Morphology and Structure , 2010 .

[6]  P. Schmuki,et al.  TiO2 nanotubes grown in different organic electrolytes: Two‐size self‐organization, single vs. double‐walled tubes, and giant diameters , 2010 .

[7]  P. Schmuki,et al.  A Photo-Electrochemical Investigation of Self-Organized TiO2 Nanotubes , 2010 .

[8]  C. Grimes,et al.  Self-assembled TiO(2) nanotube arrays by anodization of titanium in diethylene glycol: approach to extended pore widening. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[9]  Xiaodong He,et al.  Effect of electric field strength on the length of anodized titania nanotube arrays , 2009 .

[10]  Wei-min Liu,et al.  A Novel Protocol Toward Perfect Alignment of Anodized TiO2 Nanotubes , 2009 .

[11]  Craig A. Grimes,et al.  Recent Advances in the Use of TiO2 Nanotube and Nanowire Arrays for Oxidative Photoelectrochemistry , 2009 .

[12]  M. Durstock,et al.  Fabrication of highly-ordered TiO(2) nanotube arrays and their use in dye-sensitized solar cells. , 2009, Nano letters.

[13]  J. Macák,et al.  Electrochemical synthesis of self-organized TiO2 nanotubular structures using an ionic liquid (BMIM-BF4) , 2008 .

[14]  J. Macák,et al.  Formation of Double‐Walled TiO2 Nanotubes and Robust Anatase Membranes , 2008 .

[15]  Seonghoon Lee,et al.  Self-organized regular arrays of anodic TiO2 nanotubes. , 2008, Nano letters.

[16]  M. Misra,et al.  Functionalization of self-organized TiO2 nanotubes with Pd nanoparticles for photocatalytic decomposition of dyes under solar light illumination. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[17]  Mukundan Thelakkat,et al.  Highly efficient solar cells using TiO(2) nanotube arrays sensitized with a donor-antenna dye. , 2008, Nano letters.

[18]  Longtu Li,et al.  Synthesis and growth mechanism of graded TiO2 nanotube arrays by two-step anodization , 2008 .

[19]  A. J. Frank,et al.  Removing structural disorder from oriented TiO2 nanotube arrays: reducing the dimensionality of transport and recombination in dye-sensitized solar cells. , 2007, Nano letters.

[20]  Tejal A Desai,et al.  Titania nanotubes: a novel platform for drug-eluting coatings for medical implants? , 2007, Small.

[21]  Tejal A Desai,et al.  Decreased Staphylococcus epidermis adhesion and increased osteoblast functionality on antibiotic-loaded titania nanotubes. , 2007, Biomaterials.

[22]  Craig A Grimes,et al.  Self-assembled hybrid polymer-TiO2 nanotube array heterojunction solar cells. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[23]  C. Grimes,et al.  High efficiency double heterojunction polymer photovoltaic cells using highly ordered TiO2 nanotube arrays , 2007 .

[24]  C. Grimes,et al.  Fabrication of Vertically Oriented TiO2 Nanotube Arrays Using Dimethyl Sulfoxide Electrolytes , 2007 .

[25]  Tejal A Desai,et al.  Influence of engineered titania nanotubular surfaces on bone cells. , 2007, Biomaterials.

[26]  Craig A. Grimes,et al.  A new benchmark for TiO2 nanotube array growth by anodization , 2007 .

[27]  Andrei Ghicov,et al.  Self-organized, free-standing TiO2 nanotube membrane for flow-through photocatalytic applications. , 2007, Nano letters.

[28]  M. Misra,et al.  A novel method for the synthesis of titania nanotubes using sonoelectrochemical method and its application for photoelectrochemical splitting of water , 2007 .

[29]  Craig A. Grimes,et al.  Highly-ordered TiO2 nanotube arrays up to 220 µm in length: use in water photoelectrolysis and dye-sensitized solar cells , 2007 .

[30]  William H. Smyrl,et al.  Titanium Dioxide Nanotube Arrays Fabricated by Anodizing Processes Electrochemical Properties , 2006 .

[31]  Craig A. Grimes,et al.  Anodic Growth of Highly Ordered TiO2 Nanotube Arrays to 134 μm in Length , 2006 .

[32]  J. Macák,et al.  Self-organized porous TiO2 and ZrO2 produced by anodization , 2005 .

[33]  Craig A Grimes,et al.  Enhanced photocleavage of water using titania nanotube arrays. , 2005, Nano letters.

[34]  Craig A. Grimes,et al.  A room-temperature TiO2-nanotube hydrogen sensor able to self-clean photoactively from environmental contamination , 2004 .

[35]  Craig A. Grimes,et al.  Titanium oxide nanotube arrays prepared by anodic oxidation , 2001 .

[36]  Robin D. Rogers,et al.  Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation , 2001 .