High Power Terahertz and Millimeter-Wave Oscillator Design: A Systematic Approach
暂无分享,去创建一个
[1] S. Mason. Power Gain in Feedback Amplifier , 1954 .
[2] K. Kurokawa,et al. Power Waves and the Scattering Matrix , 1965 .
[3] R.M. Weikle,et al. Opening the terahertz window with integrated diode circuits , 2005, IEEE Journal of Solid-State Circuits.
[4] H. Everitt,et al. A Double Resonance Approach to Submillimeter/Terahertz Remote Sensing at Atmospheric Pressure , 2009, IEEE Journal of Quantum Electronics.
[5] K. Guinn,et al. 80-GHz differential VCO in InP SHBTs , 2004, IEEE Microwave and Wireless Components Letters.
[6] P. Siegel. Terahertz Technology , 2001 .
[7] Behzad Razavi,et al. A 300-GHz Fundamental Oscillator in 65-nm CMOS Technology , 2010, IEEE Journal of Solid-State Circuits.
[8] Mau-Chung Frank Chang,et al. Terahertz CMOS Frequency Generator Using Linear Superposition Technique , 2008, IEEE Journal of Solid-State Circuits.
[9] C. Cao,et al. 192 GHz Push-Push VCO in 0.13-micrometer CMOS , 2006 .
[10] D. Sawdai,et al. Demonstration of a 311-GHz Fundamental Oscillator Using InP HBT Technology , 2007, IEEE Transactions on Microwave Theory and Techniques.
[11] O. Momeni,et al. Electrical Prism: A High Quality Factor Filter for Millimeter-Wave and Terahertz Frequencies , 2009, IEEE Transactions on Microwave Theory and Techniques.
[12] R.W. Brodersen,et al. Millimeter-wave CMOS design , 2005, IEEE Journal of Solid-State Circuits.
[13] W. Simburger,et al. A Fundamental VCO with Integrated Output Buffer beyond 120 GHz in SiGe Bipolar Technology , 2007, 2007 IEEE/MTT-S International Microwave Symposium.
[14] B. Razavi. A Millimeter-Wave Circuit Technique , 2008, IEEE Journal of Solid-State Circuits.
[15] Ernest S. Kuh,et al. Theory of Linear Active Networks , 1967 .
[16] Masayoshi Tonouchi,et al. Cutting-edge terahertz technology , 2007 .
[17] E. Seok,et al. 192 GHz push–push VCO in 0.13 [micro sign]m CMOS , 2006 .
[18] Mau-Chung Frank Chang,et al. Generating terahertz signals in 65nm CMOS with negative-resistance resonator boosting and selective harmonic suppression , 2010, 2010 Symposium on VLSI Circuits.
[19] Munkyo Seo,et al. >300GHz fixed-frequency and voltage-controlled fundamental oscillators in an InP DHBT process , 2010, 2010 IEEE MTT-S International Microwave Symposium.
[20] Richard Lai,et al. A 330-GHz MMIC oscillator module , 2008, 2008 IEEE MTT-S International Microwave Symposium Digest.
[21] Ruonan Han,et al. Progress and Challenges Towards Terahertz CMOS Integrated Circuits , 2010, IEEE Journal of Solid-State Circuits.
[22] S.P. Voinigescu,et al. 165-GHz Transceiver in SiGe Technology , 2008, IEEE Journal of Solid-State Circuits.
[23] Chih-Ming Hung,et al. A 410GHz CMOS Push-Push Oscillator with an On-Chip Patch Antenna , 2008, 2008 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.
[24] R. Lachner,et al. A SiGe Monolithically Integrated 278 GHz Push-Push Oscillator , 2007, 2007 IEEE/MTT-S International Microwave Symposium.
[25] I. Mehdi,et al. A High-Resolution Imaging Radar at 580 GHz , 2008, IEEE Microwave and Wireless Components Letters.
[26] S.. Power Gain in Feedback Amplifiers , a Classic Revisited , 2022 .
[27] N. Llombart,et al. Penetrating 3-D Imaging at 4- and 25-m Range Using a Submillimeter-Wave Radar , 2008, IEEE Transactions on Microwave Theory and Techniques.
[28] Hen-Wai Tsao,et al. Ring-Based Triple-Push VCOs With Wide Continuous Tuning Ranges , 2009, IEEE Transactions on Microwave Theory and Techniques.
[29] R. Lachner,et al. A monolithically integrated 190-GHz SiGe push-push oscillator , 2005, IEEE Microwave and Wireless Components Letters.
[30] Behzad Razavi,et al. A 10-Gb/s CMOS clock and data recovery circuit with a half-rate binary phase/frequency detector , 2003, IEEE J. Solid State Circuits.
[31] I.I. Immoreev,et al. Ultra wideband radar systems: advantages and disadvantages , 2002, 2002 IEEE Conference on Ultra Wideband Systems and Technologies (IEEE Cat. No.02EX580).
[32] B. Heydari,et al. Millimeter-Wave Devices and Circuit Blocks up to 104 GHz in 90 nm CMOS , 2007, IEEE Journal of Solid-State Circuits.
[33] P. Siegel. Terahertz technology in biology and medicine , 2004, 2004 IEEE MTT-S International Microwave Symposium Digest (IEEE Cat. No.04CH37535).
[34] I. Gresham,et al. Ultra-wideband radar sensors for short-range vehicular applications , 2004, IEEE Transactions on Microwave Theory and Techniques.
[35] Huei Wang,et al. Triple-push oscillator approach: theory and experiments , 2001, IEEE J. Solid State Circuits.
[36] Changhua Cao,et al. A 140-GHz fundamental mode voltage-controlled oscillator in 90-nm CMOS technology , 2006, IEEE Microwave and Wireless Components Letters.
[37] R. Spence. Linear active networks , 1970 .
[38] P. Chevalier,et al. Design and Scaling of W-Band SiGe BiCMOS VCOs , 2007, IEEE Journal of Solid-State Circuits.
[39] P. Drouilhet. Predictions Based on Maximum Oscillator Frequency , 1955 .
[40] M. Barsky,et al. Demonstration of Sub-Millimeter Wave Fundamental Oscillators Using 35-nm InP HEMT Technology , 2007, IEEE Microwave and Wireless Components Letters.