High Power Terahertz and Millimeter-Wave Oscillator Design: A Systematic Approach

A systematic approach to designing high frequency and high power oscillators using activity condition is introduced. This method finds the best topology to achieve frequencies close to the fmax of the transistors. It also determines the maximum frequency of oscillation for a fixed circuit topology, considering the quality factor of the passive components. Using this technique, in a 0.13 μm CMOS process, we design and implement 121 GHz and 104 GHz fundamental oscillators with the output power of -3.5 dBm and -2.7 dBm, respectively. Next, we introduce a novel triple-push structure to realize 256 GHz and 482 GHz oscillators. The 256 GHz oscillator was implemented in a 0.13 μm CMOS process and the output power of -17 dBm was measured. The 482 GHz oscillator generates -7.9 dBm (0.16 mW) in a 65 nm CMOS process.

[1]  S. Mason Power Gain in Feedback Amplifier , 1954 .

[2]  K. Kurokawa,et al.  Power Waves and the Scattering Matrix , 1965 .

[3]  R.M. Weikle,et al.  Opening the terahertz window with integrated diode circuits , 2005, IEEE Journal of Solid-State Circuits.

[4]  H. Everitt,et al.  A Double Resonance Approach to Submillimeter/Terahertz Remote Sensing at Atmospheric Pressure , 2009, IEEE Journal of Quantum Electronics.

[5]  K. Guinn,et al.  80-GHz differential VCO in InP SHBTs , 2004, IEEE Microwave and Wireless Components Letters.

[6]  P. Siegel Terahertz Technology , 2001 .

[7]  Behzad Razavi,et al.  A 300-GHz Fundamental Oscillator in 65-nm CMOS Technology , 2010, IEEE Journal of Solid-State Circuits.

[8]  Mau-Chung Frank Chang,et al.  Terahertz CMOS Frequency Generator Using Linear Superposition Technique , 2008, IEEE Journal of Solid-State Circuits.

[9]  C. Cao,et al.  192 GHz Push-Push VCO in 0.13-micrometer CMOS , 2006 .

[10]  D. Sawdai,et al.  Demonstration of a 311-GHz Fundamental Oscillator Using InP HBT Technology , 2007, IEEE Transactions on Microwave Theory and Techniques.

[11]  O. Momeni,et al.  Electrical Prism: A High Quality Factor Filter for Millimeter-Wave and Terahertz Frequencies , 2009, IEEE Transactions on Microwave Theory and Techniques.

[12]  R.W. Brodersen,et al.  Millimeter-wave CMOS design , 2005, IEEE Journal of Solid-State Circuits.

[13]  W. Simburger,et al.  A Fundamental VCO with Integrated Output Buffer beyond 120 GHz in SiGe Bipolar Technology , 2007, 2007 IEEE/MTT-S International Microwave Symposium.

[14]  B. Razavi A Millimeter-Wave Circuit Technique , 2008, IEEE Journal of Solid-State Circuits.

[15]  Ernest S. Kuh,et al.  Theory of Linear Active Networks , 1967 .

[16]  Masayoshi Tonouchi,et al.  Cutting-edge terahertz technology , 2007 .

[17]  E. Seok,et al.  192 GHz push–push VCO in 0.13 [micro sign]m CMOS , 2006 .

[18]  Mau-Chung Frank Chang,et al.  Generating terahertz signals in 65nm CMOS with negative-resistance resonator boosting and selective harmonic suppression , 2010, 2010 Symposium on VLSI Circuits.

[19]  Munkyo Seo,et al.  >300GHz fixed-frequency and voltage-controlled fundamental oscillators in an InP DHBT process , 2010, 2010 IEEE MTT-S International Microwave Symposium.

[20]  Richard Lai,et al.  A 330-GHz MMIC oscillator module , 2008, 2008 IEEE MTT-S International Microwave Symposium Digest.

[21]  Ruonan Han,et al.  Progress and Challenges Towards Terahertz CMOS Integrated Circuits , 2010, IEEE Journal of Solid-State Circuits.

[22]  S.P. Voinigescu,et al.  165-GHz Transceiver in SiGe Technology , 2008, IEEE Journal of Solid-State Circuits.

[23]  Chih-Ming Hung,et al.  A 410GHz CMOS Push-Push Oscillator with an On-Chip Patch Antenna , 2008, 2008 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[24]  R. Lachner,et al.  A SiGe Monolithically Integrated 278 GHz Push-Push Oscillator , 2007, 2007 IEEE/MTT-S International Microwave Symposium.

[25]  I. Mehdi,et al.  A High-Resolution Imaging Radar at 580 GHz , 2008, IEEE Microwave and Wireless Components Letters.

[26]  S. Power Gain in Feedback Amplifiers , a Classic Revisited , 2022 .

[27]  N. Llombart,et al.  Penetrating 3-D Imaging at 4- and 25-m Range Using a Submillimeter-Wave Radar , 2008, IEEE Transactions on Microwave Theory and Techniques.

[28]  Hen-Wai Tsao,et al.  Ring-Based Triple-Push VCOs With Wide Continuous Tuning Ranges , 2009, IEEE Transactions on Microwave Theory and Techniques.

[29]  R. Lachner,et al.  A monolithically integrated 190-GHz SiGe push-push oscillator , 2005, IEEE Microwave and Wireless Components Letters.

[30]  Behzad Razavi,et al.  A 10-Gb/s CMOS clock and data recovery circuit with a half-rate binary phase/frequency detector , 2003, IEEE J. Solid State Circuits.

[31]  I.I. Immoreev,et al.  Ultra wideband radar systems: advantages and disadvantages , 2002, 2002 IEEE Conference on Ultra Wideband Systems and Technologies (IEEE Cat. No.02EX580).

[32]  B. Heydari,et al.  Millimeter-Wave Devices and Circuit Blocks up to 104 GHz in 90 nm CMOS , 2007, IEEE Journal of Solid-State Circuits.

[33]  P. Siegel Terahertz technology in biology and medicine , 2004, 2004 IEEE MTT-S International Microwave Symposium Digest (IEEE Cat. No.04CH37535).

[34]  I. Gresham,et al.  Ultra-wideband radar sensors for short-range vehicular applications , 2004, IEEE Transactions on Microwave Theory and Techniques.

[35]  Huei Wang,et al.  Triple-push oscillator approach: theory and experiments , 2001, IEEE J. Solid State Circuits.

[36]  Changhua Cao,et al.  A 140-GHz fundamental mode voltage-controlled oscillator in 90-nm CMOS technology , 2006, IEEE Microwave and Wireless Components Letters.

[37]  R. Spence Linear active networks , 1970 .

[38]  P. Chevalier,et al.  Design and Scaling of W-Band SiGe BiCMOS VCOs , 2007, IEEE Journal of Solid-State Circuits.

[39]  P. Drouilhet Predictions Based on Maximum Oscillator Frequency , 1955 .

[40]  M. Barsky,et al.  Demonstration of Sub-Millimeter Wave Fundamental Oscillators Using 35-nm InP HEMT Technology , 2007, IEEE Microwave and Wireless Components Letters.