Extrêmes et multifractals en hydrologie : résultats, validations et perspectives

Extremes and multifractals in hydrology: results, validations and prospects. The methods of forecasting extremes are probably at a turning point. The predetermination of the extremes based on more or less sophisticated methods of probability law fitting remain sensitive to sampling uncertainties and errors deriving from the choice of probability law. For floods, hydrologists have developed methods of extrapolation by going beyond the (limited) streamflow time series to include historical data, geomorphological data, paleohydrological data, to include the regional context or by integrating knowledge of the rain rate stream-flow relation (e.g. the Gradex method or simulation methods). Thanks to the development of multifractals, new statistical physics techniques, are now available which permit - over wide ranges of scale - to easily handle extreme variability, intermittency and long range correlations in the hydrometeorological fields. For example, it has been shown that nonlinear cascade interactions over large ranges of scale generally lead to power law probability distributions, very rich in extremes. These developments have stimulated several national (in the framework of RIO2 and PNRH) and international (e.g. DSIG or PUB) projects to which the authors have contributed. It is timely to discuss where we stand.

[1]  Lewis F. Richardson,et al.  Weather Prediction by Numerical Process , 1922 .

[2]  M. Pardé,et al.  Fleuves et rivières , 1933 .

[3]  B. Mandelbrot Intermittent turbulence in self-similar cascades: divergence of high moments and dimension of the carrier , 1974, Journal of Fluid Mechanics.

[4]  B. M. Hill,et al.  A Simple General Approach to Inference About the Tail of a Distribution , 1975 .

[5]  Benoit B. Mandelbrot,et al.  Fractal Geometry of Nature , 1984 .

[6]  M. R. Leadbetter,et al.  Extremes and Related Properties of Random Sequences and Processes: Springer Series in Statistics , 1983 .

[7]  D. Schertzer,et al.  Physical modeling and analysis of rain and clouds by anisotropic scaling multiplicative processes , 1987 .

[8]  Shaun Lovejoy,et al.  Multifractals, universality classes and satellite and radar measurements of cloud and rain fields , 1990 .

[9]  J. Hosking L‐Moments: Analysis and Estimation of Distributions Using Linear Combinations of Order Statistics , 1990 .

[10]  V. Gupta,et al.  ON LOGNORMALITY AND SCALING IN SPATIAL RAINFALL AVERAGES , 1991 .

[11]  Shaun Lovejoy,et al.  On the Determination of Universal Multifractal Parameters in Turbulence , 1992 .

[12]  Edward C. Waymire,et al.  A statistical analysis of mesoscale rainfall as a random cascade , 1993 .

[13]  Shaun Lovejoy,et al.  Multifractals and extreme rainfall events , 1993 .

[14]  Klaus Fraedrich,et al.  Scaling regimes of composite rainfall time series , 1993 .

[15]  Thomas M. Over,et al.  Statistical Analysis of Mesoscale Rainfall: Dependence of a Random Cascade Generator on Large-Scale Forcing , 1994 .

[16]  J. Olsson,et al.  Limits and characteristics of the multifractal behaviour of a high-resolution rainfall time series , 1995 .

[17]  Jonas Olsson,et al.  Multifractal analysis of daily spatial rainfall distributions , 1996 .

[18]  Merab Menabde,et al.  Multifractal characterization of rain fields with a strong orographic influence , 1996 .

[19]  P. Hubert,et al.  Multifractal analysis and modeling of rainfall and river flows and scaling, causal transfer functions , 1996 .

[20]  P. Hubert,et al.  Interprétation multifractale des courbes intensité-durée-fréquence des précipitations , 1997 .

[21]  Garrison Sposito,et al.  Scale Dependence and Scale Invariance in Hydrology , 1998 .

[22]  François G. Schmitt,et al.  Modeling of rainfall time series using two-state renewal processes and multifractals , 1998 .

[23]  Bernard Bobée,et al.  Towards operational guidelines for over-threshold modeling , 1999 .

[24]  François G. Schmitt,et al.  SCALING OF RETURN TIMES FOR A HIGH-RESOLUTION RAINFALL TIME SERIES , 2002 .

[25]  J. Corcoran Modelling Extremal Events for Insurance and Finance , 2002 .

[26]  D. Labat,et al.  Rainfall–runoff relations for karstic springs: multifractal analyses , 2002 .

[27]  B. Mandelbrot Intermittent turbulence in self-similar cascades : divergence of high moments and dimension of the carrier , 2004 .

[28]  P. Hubert,et al.  Multiscaling geophysics and sustainable development , 2004 .

[29]  H. Andrieu,et al.  Use of historical data to assess the occurrence of floods in small watersheds in the French Mediterranean area , 2005 .

[30]  Shaun Lovejoy,et al.  Multifractals, cloud radiances and rain , 2006 .

[31]  G. Benito,et al.  Palaeoflood hydrology: insight into rare events and extreme flood discharges , 2006 .

[32]  José-Luis Delgado Estimation des crues de référence par approchegéomorphologique , 2006 .

[33]  P. Hubert,et al.  MULTIFRACTAL MODELING OF THE BLAVET RIVER DISCHARGES AT GUERLEDAN , 2008 .

[34]  Michel Lang,et al.  The flood probability distribution tail: how heavy is it? , 2008 .

[35]  I. Tchiguirinskaia,et al.  Analyse multifractale en hydrologie. Application aux series temporelles , 2008 .