Novel Fast Binary Hash for Content-based Solar Image Retrieval

The Solar Dynamics Observatory provides data to research the connected Sun-Earth system and the impact of the Sun on living on the Earth. Its part, the Atmospheric Imaging Assembly, performs continuous full-disk observations of the solar chromosphere and corona in seven extreme ultraviolet channels with the 12-second cadence of high-resolution, over 16-megapixel images. In the paper, we create a fast binary hash to retrieve similar solar images in this vast collection. We use a fully convolutional autoencoder working on preprocessed solar full-disk projections.

[1]  Geoffrey E. Hinton,et al.  Semantic hashing , 2009, Int. J. Approx. Reason..

[2]  Bin Zhou,et al.  A regional adaptive variational PDE model for computed tomography image reconstruction , 2019, Pattern Recognit..

[3]  João Paulo Papa,et al.  Deep Features Extraction for Robust Fingerprint Spoofing Attack Detection , 2018, J. Artif. Intell. Soft Comput. Res..

[4]  Ewaryst Rafajłowicz,et al.  Testing (non‐)linearity of distributed‐parameter systems from a video sequence , 2010 .

[5]  Rafal A. Angryk,et al.  2016 Ieee International Conference on Big Data (big Data) Describing Solar Images with Sparse Coding for Similarity Search , 2022 .

[6]  Rafal A. Angryk,et al.  Large-Scale Region-Based Multimedia Retrieval for Solar Images , 2014, ICAISC.

[7]  Edward R. Dougherty,et al.  An introduction to morphological image processing , 1992 .

[8]  J. Banda,et al.  Steps Toward a Large-Scale Solar Image Data Analysis to Differentiate Solar Phenomena , 2013 .

[9]  Kai Ming Ting,et al.  Precision and Recall , 2017, Encyclopedia of Machine Learning and Data Mining.

[10]  Rafal A. Angryk,et al.  A large-scale solar dynamics observatory image dataset for computer vision applications , 2017, Scientific data.

[11]  Guillermo Sapiro,et al.  Online Learning for Matrix Factorization and Sparse Coding , 2009, J. Mach. Learn. Res..

[12]  Rafal A. Angryk,et al.  Regional content-based image retrieval for solar images: Traditional versus modern methods , 2015, Astron. Comput..

[13]  Andrzej Cader,et al.  On Training Deep Neural Networks Using a Streaming Approach , 2020, J. Artif. Intell. Soft Comput. Res..

[14]  Gadadhar Sahoo,et al.  Comparison of Content Based Image Retrieval Systems Using Wavelet and Curvelet Transform , 2012 .

[15]  K. Kavitha,et al.  Evaluation of Distance Measures for Feature based Image Registration using AlexNet , 2019, ArXiv.

[16]  Jean Serra,et al.  Image Analysis and Mathematical Morphology , 1983 .

[17]  Fredric C. Gey,et al.  The Relationship between Recall and Precision , 1994, J. Am. Soc. Inf. Sci..

[18]  Rafal A. Angryk,et al.  Scalable solar image Retrieval with Lucene , 2014, 2014 IEEE International Conference on Big Data (Big Data).

[19]  Dustin J. Kempton,et al.  Tracking Solar Phenomena from the SDO , 2018, The Astrophysical Journal.

[20]  Peiyi Shen,et al.  Combined Energy Minimization for Image Reconstruction from Few Views , 2012 .

[21]  Roman Senkerik,et al.  Efficient Image Retrieval by Fuzzy Rules from Boosting and Metaheuristic , 2019, J. Artif. Intell. Soft Comput. Res..

[22]  Patryk Najgebauer,et al.  Fast Image Index for Database Management Engines , 2020, J. Artif. Intell. Soft Comput. Res..

[23]  Ewaryst Rafajlowicz,et al.  Local Detection Of Defects From Image Sequences , 2008, Int. J. Appl. Math. Comput. Sci..