svaRetro and svaNUMT: modular packages for annotating retrotransposed transcripts and nuclear integration of mitochondrial DNA in genome sequencing data

Background The biological significance of structural variation is now more widely recognized. However, due to the lack of available tools for downstream analysis, including processing and annotating, interpretation of structural variant calls remains a challenge. Findings Here we present svaRetro and svaNUMT, R packages that provide functions for annotating novel genomic events such as non-reference retro-copied transcripts and nuclear integration of mitochondrial DNA. We evaluate the performance of these packages to detect events using simulations and public benchmarking datasets, and annotate processed transcripts in a public structural variant database. Conclusions svaRetro and svaNUMT provide efficient, modular tools for downstream identification and annotation of structural variant calls.

[1]  Daniel L. Cameron,et al.  Unscrambling cancer genomes via integrated analysis of structural variation and copy number , 2020, bioRxiv.

[2]  Ken Chen,et al.  A robust benchmark for detection of germline large deletions and insertions , 2020, Nature Biotechnology.

[3]  David T. W. Jones,et al.  Publisher Correction: Comprehensive analysis of chromothripsis in 2,658 human cancers using whole-genome sequencing , 2020, Nature Genetics.

[4]  M. González-Sánchez,et al.  INSERTIONS OF MITOCHONDRIAL DNA INTO THE NUCLEUS. EFFECTS AND ROLE IN CELL EVOLUTION. , 2020, Genome.

[5]  Tariq Ahmad,et al.  A structural variation reference for medical and population genetics , 2020, Nature.

[6]  Ryan E. Mills,et al.  Characterization of nuclear mitochondrial insertions in the whole genomes of primates , 2020, bioRxiv.

[7]  Ken Chen,et al.  Comprehensive analysis of chromothripsis in 2,658 human cancers using whole-genome sequencing , 2018, Nature Genetics.

[8]  J. Weinstein,et al.  Comprehensive molecular characterization of mitochondrial genomes in human cancers , 2020, Nature Genetics.

[9]  Christophe Dessimoz,et al.  Structural variant calling: the long and the short of it , 2019, Genome Biology.

[10]  Grace Tiao,et al.  An open resource of structural variation for medical and population genetics , 2019 .

[11]  V. Bafna,et al.  Exploring the landscape of focal amplifications in cancer using AmpliconArchitect , 2019, Nature Communications.

[12]  Nuno A. Fonseca,et al.  Comprehensive molecular characterization of mitochondrial genomes in human cancers , 2017, bioRxiv.

[13]  Daniel L. Cameron,et al.  GRIDSS: sensitive and specific genomic rearrangement detection using positional de Bruijn graph assembly , 2017, bioRxiv.

[14]  Carlos Caldas,et al.  Corrigendum: Frequent somatic transfer of mitochondrial DNA into the nuclear genome of human cancer cells. , 2016, Genome research.

[15]  Steven J. M. Jones,et al.  A somatic reference standard for cancer genome sequencing , 2016, Scientific Reports.

[16]  Xiaoyu Chen,et al.  Manta: rapid detection of structural variants and indels for germline and cancer sequencing applications , 2016, Bioinform..

[17]  Gabor T. Marth,et al.  An integrated map of structural variation in 2,504 human genomes , 2015, Nature.

[18]  Alexa B. R. McIntyre,et al.  Extensive sequencing of seven human genomes to characterize benchmark reference materials , 2015, Scientific Data.

[19]  Roland Eils,et al.  circlize implements and enhances circular visualization in R , 2014, Bioinform..

[20]  Ryan E. Mills,et al.  The genomic landscape of polymorphic human nuclear mitochondrial insertions , 2014, bioRxiv.

[21]  Paul Shannon,et al.  VariantAnnotation: a Bioconductor package for exploration and annotation of genetic variants , 2014, Bioinform..

[22]  Andrew Menzies,et al.  Processed pseudogenes acquired somatically during cancer development , 2014, Nature Communications.

[23]  M. Coughlan,et al.  Mitochondrial dysfunction and mitophagy: the beginning and end to diabetic nephropathy? , 2014, British journal of pharmacology.

[24]  Lars Feuk,et al.  The Database of Genomic Variants: a curated collection of structural variation in the human genome , 2013, Nucleic Acids Res..

[25]  Robert Gentleman,et al.  Software for Computing and Annotating Genomic Ranges , 2013, PLoS Comput. Biol..

[26]  Akinori Eiyama,et al.  Mitochondrial degradation during starvation is selective and temporally distinct from bulk autophagy in yeast , 2013, FEBS letters.

[27]  Ryan M. Layer,et al.  Breakpoint profiling of 64 cancer genomes reveals numerous complex rearrangements spawned by homology-independent mechanisms , 2013, Genome research.

[28]  Li Ding,et al.  Retrotransposition of gene transcripts leads to structural variation in mammalian genomes , 2013, Genome Biology.

[29]  Thomas M. Keane,et al.  RetroSeq: transposable element discovery from next-generation sequencing data , 2013, Bioinform..

[30]  Ryan M. Layer,et al.  LUMPY: a probabilistic framework for structural variant discovery , 2012, Genome Biology.

[31]  Leping Li,et al.  ART: a next-generation sequencing read simulator , 2012, Bioinform..

[32]  Marcella Attimonelli,et al.  The reference human nuclear mitochondrial sequences compilation validated and implemented on the UCSC genome browser , 2011, BMC Genomics.

[33]  Shwu-Fan Ma,et al.  A transcribed pseudogene of MYLK promotes cell proliferation , 2011, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[34]  K. Morris,et al.  Transcriptional regulation of Oct4 by a long non-coding RNA antisense to Oct4-pseudogene 5 , 2010, Transcription.

[35]  P. Pandolfi,et al.  A coding-independent function of gene and pseudogene mRNAs regulates tumour biology , 2010, Nature.

[36]  Robert Gentleman,et al.  rtracklayer: an R package for interfacing with genome browsers , 2009, Bioinform..

[37]  S. Covo,et al.  Numt-Mediated Double-Strand Break Repair Mitigates Deletions during Primate Genome Evolution , 2008, PLoS genetics.

[38]  Adrian Gherman,et al.  Population Bottlenecks as a Potential Major Shaping Force of Human Genome Architecture , 2007, PLoS genetics.

[39]  Fredj Tekaia,et al.  Continued Colonization of the Human Genome by Mitochondrial DNA , 2004, PLoS biology.

[40]  Cécile Fairhead,et al.  Mitochondrial DNA repairs double-strand breaks in yeast chromosomes , 1999, Nature.

[41]  J. Blanchard,et al.  Mitochondrial DNA migration events in yeast and humans: integration by a common end-joining mechanism and alternative perspectives on nucleotide substitution patterns. , 1996, Molecular biology and evolution.

[42]  Carlos Caldas,et al.  Frequent somatic transfer of mitochondrial DNA into the nuclear genome of human cancer cells , 2015, Genome research.

[43]  A. Sivachenko,et al.  Punctuated Evolution of Prostate Cancer Genomes , 2013, Cell.

[44]  Ira M. Hall,et al.  BEDTools: a flexible suite of utilities for comparing genomic features , 2010, Bioinform..