A qualitative profile-based approach to edge detection

Edge detection is a fundamental problem of computer vision and has been widely investigated. We propose a new framework for edge detection based on edge profiles. Our approach is partly inspired by the well-known model called “active contour” which is based on minimization of the energy composed of the terms of continuity and smoothness of the contour, along with edge attraction forces of the image. We will introduce similar constructs called “worms” in which profile-forced are used. Unlike a snake which is initialized by an arbitrary curve, a worm can be initialized at a seed point. Our edge model, based on one-dimensional qualitative edge profile fitting and edge consistency, will produce one continuous edge from an initial seed point. A “profile” is defined as a finite cross-section of a two-dimensional image along a line segment. By “qualitative edge profile fitting”, we mean that, in the vicinity of an edge point, the profile from that edge point will give a local minimum value, relative to some evaluation function. The value itself is not important. “Edge consistency” means that all the profiles on the same edge should be consistent. Appropriate evaluation functions are needed for different types of edge profiles, such as step edges, ramp edges, etc. an evaluation function must meet the requirement that it will produce local minima at the positions where edges of a given type occurs in the profile. Instead of subjective thresholding, image noise is measured statistically and used as a systematic way of filtering false edges. Once an edge point is localized, parameters of the edge, such as colors on each side and edge width, can be determined by the profile of that edge point. The rest of the edge points on the same edge can be found by extended from that point, using the specific evaluation function and those edge parameters. The software architecture for achieving consistent and high quality results in this setting is a non-trivial problem we address. We develop the necessary algorithms and implement them. The results are compared to widely used edge detectors such as the Canny detector.

[1]  S. Rice Mathematical analysis of random noise , 1944 .

[2]  Dr. M. G. Worster Methods of Mathematical Physics , 1947, Nature.

[3]  Edsger W. Dijkstra,et al.  A note on two problems in connexion with graphs , 1959, Numerische Mathematik.

[4]  Manfred H. Hueckel An Operator Which Locates Edges in Digitized Pictures , 1971, J. ACM.

[5]  Manfred H. Hueckel A Local Visual Operator Which Recognizes Edges and Lines , 1973, JACM.

[6]  Larry S. Davis,et al.  A survey of edge detection techniques , 1975 .

[7]  Frank O'Gorman,et al.  Edge Detection Using Walsh Functions , 1976, Artif. Intell..

[8]  Robert A. Hummel,et al.  Feature detection using basis functions , 1979 .

[9]  D Marr,et al.  Theory of edge detection , 1979, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[10]  Dana H. Ballard,et al.  Generalizing the Hough transform to detect arbitrary shapes , 1981, Pattern Recognit..

[11]  T. O. Binford,et al.  Line Finding With Subpixel Precision , 1981, Other Conferences.

[12]  J. Galayda Edge Focusing , 1981, IEEE Transactions on Nuclear Science.

[13]  Larry S. Davis,et al.  Subpixel edge estimation , 1983, Pattern Recognit..

[14]  Ellen C. Hildreth,et al.  The detection of intensity changes by computer and biological vision systems , 1983, Comput. Vis. Graph. Image Process..

[15]  Andrew P. Witkin,et al.  Scale-Space Filtering , 1983, IJCAI.

[16]  Owen Robert Mitchell,et al.  Edge Location to Subpixel Values in Digital Imagery , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[17]  Ralph Hartley,et al.  A Gaussian-weighted multiresolution edge detector , 1985, Comput. Vis. Graph. Image Process..

[18]  Thomas O. Binford,et al.  On Detecting Edges , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[19]  Achim Hummel,et al.  Representations Based on Zero-Crossing in Scale-Space-M , 2018, CVPR 1986.

[20]  John F. Canny,et al.  A Computational Approach to Edge Detection , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[21]  Alan L. Yuille,et al.  A regularized solution to edge detection , 1985, J. Complex..

[22]  Alex Pentland,et al.  Good vibrations: modal dynamics for graphics and animation , 1989, SIGGRAPH.

[23]  Daniele D. Giusto,et al.  Automatic parameter computation for edge detection by the zero-crossing method , 1989 .

[24]  Ramesh C. Jain,et al.  Using Dynamic Programming for Solving Variational Problems in Vision , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[25]  Jitendra Malik,et al.  Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[26]  L. Ambrosio,et al.  Approximation of functional depending on jumps by elliptic functional via t-convergence , 1990 .

[27]  Josef Kittler,et al.  Optimal Edge Detectors for Ramp Edges , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[28]  Alex Pentland,et al.  Recovery of Nonrigid Motion and Structure , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[29]  Mark Nitzberg,et al.  Nonlinear Image Filtering with Edge and Corner Enhancement , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[30]  Jayaram K. Udupa,et al.  Adaptive boundary detection using 'live-wire' two-dimensional dynamic programming , 1992, Proceedings Computers in Cardiology.

[31]  Salvatore Tabbone,et al.  A multi-scale edge detector , 1993, Pattern Recognit..

[32]  G. Cottet,et al.  Image processing through reaction combined with nonlinear diffusion , 1993 .

[33]  Svetha Venkatesh,et al.  Modeling Edges at Subpixel Accuracy Using the Local Energy Approach , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[34]  William A. Barrett,et al.  Intelligent scissors for image composition , 1995, SIGGRAPH.

[35]  A. Koschan A Comparative Study On Color Edge Detection , 1995 .

[36]  Alok Gupta,et al.  Dynamic Programming for Detecting, Tracking, and Matching Deformable Contours , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[37]  Salvatore Tabbone,et al.  Adaptive Elimination of False Edges for First Order Detectors , 1995, ICIAP.

[38]  Joseph N. Wilson,et al.  Handbook of computer vision algorithms in image algebra , 1996 .

[39]  Jim R. Parker,et al.  Algorithms for image processing and computer vision , 1996 .

[40]  William A. Barrett,et al.  Interactive Segmentation with Intelligent Scissors , 1998, Graph. Model. Image Process..

[41]  Djemel Ziou,et al.  Edge Detection Techniques-An Overview , 1998 .

[42]  Shree K. Nayar,et al.  Design and evaluation of feature detectors , 1998 .

[43]  Laxmi Parida,et al.  Junctions: Detection, Classification, and Reconstruction , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[44]  Stephen M. Smith,et al.  SUSAN—A New Approach to Low Level Image Processing , 1997, International Journal of Computer Vision.

[45]  J. Koenderink The structure of images , 2004, Biological Cybernetics.

[46]  Demetri Terzopoulos,et al.  Snakes: Active contour models , 2004, International Journal of Computer Vision.

[47]  Rachid Deriche,et al.  Using Canny's criteria to derive a recursively implemented optimal edge detector , 1987, International Journal of Computer Vision.

[48]  Karl Rohr,et al.  Recognizing corners by fitting parametric models , 1992, International Journal of Computer Vision.