Enhancing electron diffusion length in narrow-bandgap perovskites for efficient monolithic perovskite tandem solar cells

Developing multijunction perovskite solar cells (PSCs) is an attractive route to boost PSC efficiencies to above the single-junction Shockley-Queisser limit. However, commonly used tin-based narrow-bandgap perovskites have shorter carrier diffusion lengths and lower absorption coefficient than lead-based perovskites, limiting the efficiency of perovskite-perovskite tandem solar cells. In this work, we discover that the charge collection efficiency in tin-based PSCs is limited by a short diffusion length of electrons. Adding 0.03 molar percent of cadmium ions into tin-perovskite precursors reduce the background free hole concentration and electron trap density, yielding a long electron diffusion length of 2.72 ± 0.15 µm. It increases the optimized thickness of narrow-bandgap perovskite films to 1000 nm, yielding exceptional stabilized efficiencies of 20.2 and 22.7% for single junction narrow-bandgap PSCs and monolithic perovskite-perovskite tandem cells, respectively. This work provides a promising method to enhance the optoelectronic properties of narrow-bandgap perovskites and unleash the potential of perovskite-perovskite tandem solar cells. Tin-based perovskites possess the suitable narrow-bandgap for tandem solar cells but their short carrier diffusion lengths limit device efficiency. Here Yang et al. add cadmium ions to increase diffusion length to above 2 µm by reducing the background free hole concentration and electron trap density.

[1]  Bo Chen,et al.  Defect passivation in hybrid perovskite solar cells using quaternary ammonium halide anions and cations , 2017, Nature Energy.

[2]  Yongfeng Lu,et al.  A Self‐Powered, Sub‐nanosecond‐Response Solution‐Processed Hybrid Perovskite Photodetector for Time‐Resolved Photoluminescence‐Lifetime Detection , 2016, Advanced materials.

[3]  M. Johnston,et al.  Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells , 2014 .

[4]  C. Ballif,et al.  Efficient Monolithic Perovskite/Perovskite Tandem Solar Cells , 2017 .

[5]  P. Rieder,et al.  Removing Leakage and Surface Recombination in Planar Perovskite Solar Cells , 2017, 1902.06540.

[6]  Henk J. Bolink,et al.  Removing Leakage and Surface Recombination in Planar Perovskite Solar Cells , 2017 .

[7]  A. Jen,et al.  Defect Passivation via a Graded Fullerene Heterojunction in Low-Bandgap Pb–Sn Binary Perovskite Photovoltaics , 2017 .

[8]  A. Tiwari,et al.  High-efficiency inverted semi-transparent planar perovskite solar cells in substrate configuration , 2016, Nature Energy.

[9]  Yang Yang,et al.  Perovskite/polymer monolithic hybrid tandem solar cells utilizing a low-temperature, full solution process , 2015 .

[10]  Tsutomu Miyasaka,et al.  Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. , 2009, Journal of the American Chemical Society.

[11]  Juan J. Diaz Leon,et al.  Fully textured monolithic perovskite/silicon tandem solar cells with 25.2% power conversion efficiency , 2018, Nature Materials.

[12]  Nripan Mathews,et al.  Lead‐Free Halide Perovskite Solar Cells with High Photocurrents Realized Through Vacancy Modulation , 2014, Advanced materials.

[13]  Dong Hoe Kim,et al.  Carrier lifetimes of >1 μs in Sn-Pb perovskites enable efficient all-perovskite tandem solar cells , 2019, Science.

[14]  H. Queisser,et al.  Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells , 1961 .

[15]  D. Morgan,et al.  A theoretical and experimental study of recombination in silicon p−n junctions , 1975 .

[16]  Yang Yang,et al.  High-performance perovskite/Cu(In,Ga)Se2 monolithic tandem solar cells , 2018, Science.

[17]  S. Bent,et al.  Tin–lead halide perovskites with improved thermal and air stability for efficient all-perovskite tandem solar cells , 2018 .

[18]  Charalambos C. Katsidis,et al.  General transfer-matrix method for optical multilayer systems with coherent, partially coherent, and incoherent interference. , 2002, Applied optics.

[19]  Hao Li,et al.  CsSnI3: Semiconductor or metal? High electrical conductivity and strong near-infrared photoluminescence from a single material. High hole mobility and phase-transitions. , 2012, Journal of the American Chemical Society.

[20]  O. Gunawan,et al.  Perovskite-kesterite monolithic tandem solar cells with high open-circuit voltage , 2014 .

[21]  Sandeep Kumar Pathak,et al.  Lead-free organic–inorganic tin halide perovskites for photovoltaic applications , 2014 .

[22]  R. Quintero‐Bermudez,et al.  Suppression of atomic vacancies via incorporation of isovalent small ions to increase the stability of halide perovskite solar cells in ambient air , 2018, Nature Energy.

[23]  A. Jen,et al.  Highly Efficient Perovskite–Perovskite Tandem Solar Cells Reaching 80% of the Theoretical Limit in Photovoltage , 2017, Advanced materials.

[24]  Zhigang Yin,et al.  Planar‐Structure Perovskite Solar Cells with Efficiency beyond 21% , 2017, Advanced materials.

[25]  Jonathan P. Mailoa,et al.  23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability , 2017, Nature Energy.

[26]  Anders Hagfeldt,et al.  Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance , 2016, Science.

[27]  J. Noh,et al.  Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. , 2013, Nano letters.

[28]  Kai Zhu,et al.  Four-Terminal All-Perovskite Tandem Solar Cells Achieving Power Conversion Efficiencies Exceeding 23% , 2018 .

[29]  Tae-Youl Yang,et al.  A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells , 2018, Nature Energy.

[30]  Rebecca A. Belisle,et al.  Perovskite-perovskite tandem photovoltaics with optimized band gaps , 2016, Science.

[31]  A. Jen,et al.  Ideal Bandgap Organic–Inorganic Hybrid Perovskite Solar Cells , 2017, Advanced materials.

[32]  Zhengshan J. Yu,et al.  Grain Engineering for Perovskite/Silicon Monolithic Tandem Solar Cells with Efficiency of 25.4% , 2019, Joule.

[33]  Zhibin Yang,et al.  Stable Low‐Bandgap Pb–Sn Binary Perovskites for Tandem Solar Cells , 2016, Advanced materials.

[34]  Kai Zhu,et al.  Low-bandgap mixed tin–lead iodide perovskite absorbers with long carrier lifetimes for all-perovskite tandem solar cells , 2017, Nature Energy.

[35]  Robert P. H. Chang,et al.  Lead-free solid-state organic–inorganic halide perovskite solar cells , 2014, Nature Photonics.

[36]  M. Wasielewski,et al.  Carrier Diffusion Lengths of over 500 nm in Lead-Free Perovskite CH3NH3SnI3 Films. , 2016, Journal of the American Chemical Society.

[37]  J. Teuscher,et al.  Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites , 2012, Science.

[38]  L. Quan,et al.  SOLAR CELLS: Efficient and stable solution‐processed planar perovskite solar cells via contact passivation , 2017 .

[39]  Kai Zhu,et al.  Efficient two-terminal all-perovskite tandem solar cells enabled by high-quality low-bandgap absorber layers , 2018, Nature Energy.