Sensitivity projections for a dual-phase argon TPC optimized for light dark matter searches through the ionization channel
暂无分享,去创建一个
C. Dionisi | K. Kondo | M. Rescigno | M. Rossi | O. Dadoun | A. Moggi | B. Smith | S. Cavuoti | P. Musico | P. Barrillon | S. D'Auria | S. Cecco | F. Hubaut | V. Ippolito | E. Guirriec | L. Mapelli | P. Pralavorio | F. Ragusa | J. Vossebeld | I. Wingerter-Seez | Y. Wang | M. Lai | W. Bonivento | S. Albergo | A. Tricomi | A. Alton | G. Batignani | M. Giorgi | L. Cifarelli | M. Pallavicini | G. Covone | M. Lissia | P. Pegoraro | S. Sulis | F. Retière | C. Muscas | L. Consiglio | P. Castello | G. Filippis | V. Cataudella | D. Franco | M. Gromov | A. Renshaw | A. Sheshukov | T. Hugues | S. Bussino | F. Capua | E. Paoloni | A. Sokolov | M. Guerzoni | S. Davini | A. Derbin | C. Galbiati | C. Ghiano | A. Ianni | G. Korga | I. Machulin | V. Muratova | A. Pocar | A. Razeto | M. Skorokhvatov | O. Smirnov | Y. Suvorov | R. Tartaglia | G. Testera | G. Zuzel | A. Zani | L. Pandola | G. Paternoster | A. Masoni | A. Capra | L. Noto | S. Stracka | F. Dordei | M. Spangenberg | F. Raffaelli | M. Daniel | A. McDonald | M. Boulay | A. Hallin | P. Skensved | A. Tonazzo | I. Manthos | S. Pasquale | A. Margotti | R. Nania | C. Mariani | J. Maricic | R. Milincic | R. Santorelli | R. Diaz | C. Cicalo | D. Gruttola | G. Scioli | N. Funicello | E. Scapparone | D. Semenov | A. Ramírez | A. Hamer | C. Jillings | P. Amaudruz | G. Rosa | A. Gendotti | C. Giganti | S. Horikawa | J. Nowak | A. Rubbia | K. Mavrokoridis | F. Pietropaolo | S. Pordes | Y. Ramachers | A. Szelc | K. Pelczar | O. Samoylov | P. Franchini | L. Doria | R. Wheadon | J. Busto | O. Azzolini | E. Chyhyrynets | C. Pira | D. Santone | J. Monroe | P. Cavalcante | A. Chepurnov | S. Mari | G. Dellacasa | C. Martoff | A. Buzulutskov | I. Albuquerque | C. Pellegrino | A. Shchagin | A. Kubankin | A. Basco | M. Kuss | V. Cocco | F. Perotti | M. Mart'inez | H. Back | A. Caminata | L. Pagani | E. Pantic | F. Resnati | G. Giovanetti | C. Savarese | S. Westerdale | T. Viant | G. Fiorillo | C. Kendziora | M. Harańczyk | I. Kochanek | M. Gulino | G. Longo | A. Oleinik | M. Ave | A. Franceschi | T. Napolitano | M. Garbini | M. Uffelen | S. Sanfilippo | N. Canci | M. Razeti | M. Wada | A. Falco | V. Strickland | P. D. Stefano | E. Hungerford | T. Alexander | B. Bottino | M. Cadeddu | M. Cadoni | M. Carlini | A. Devoto | F. Gabriele | M. Guan | B. Hackett | E. Unzhakov | A. Vishneva | T. Thorpe | G. Keppel | S. Copello | D. Auty | R. Wojaczy'nski | C. Ripoli | A. Grobov | V. Pesudo | M. Stringer | E. Leason | P. G. Abia | A. Gola | E. Frolov | I. Nikulin | S. Piacentini | A. Roberts | A. Khomyakov | M. Zykova | R. Avetisov | A. O. D. Sol'orzano | M. Kimura | G. G. D. Cortona | M. Morrocchi | A. Mazzi | G. Gallina | K. Nikolopoulos | A. D. Candia | N. Cargioli | E. Mozhevitina | K. Thieme | M. Commara | A. Taylor | G. Buccino | A. Zabihi | P. Agnes | A. B. Olmedo | E. Borisova | M. Caravati | J. M. C. Ruiz | S. Chashin | G. Dolganov | R. A. Giampaolo | V. Oleynikov | L. Rignanese | J. Rode | L. Romero | E. Sandford | A. Steri | T. Erjavec | P. Kachru | A. Marini | S. Caprioli | L. Lidey | M. A. Corona | A. Moharana | D. Poehlmann | Y. Xie | E. Berzin | J. Hall | J. Taylor | A. Rivetti | M. Nessi | R. Stefanizzi | C. Guo | A. Zichichi | A. Messina | D. Cintas | G. Gallus | V. Casanueva | M. Wójcik | S. Cebrián | T. Hessel | D. Price | C. Yang | R. Vogelaar | Z. Balmforth | L. Luzzi | M. F. Díaz | I. Ahmad | I. Avetisov | V. Barbarian | A. Bondar | M. C'ardenas-Montes | E. C. Vilda | S. Cross | P. Czudak | M. D’Aniello | M. R. Rolo | D. Gahan | D. Gorman | G. Grauso | H. Helton | S. Hill | A. Kemp | S. Koulosousas | M. Ku'zniak | X. Li | J. Lipp | O. Macfadyen | M. Mart'inez | T. Mr'oz | G. Nieradka | K. Olchansky | P. Organtini | N. Pino | C. Roberts | G. Rogers | S. Sadashivajois | T. Saffold | M. Simeone | T. Smirnova | A. Sung | C. Turkoug | S. Tedesco | S. Torres-Lara | T. V. John | S. Viel | M. Walczak | L. Williams | T. Wright | P. Zakhary | M. Mart'inez | C. Cicalò | G. G. Cortona | M. Rolo | Y. Xie
[1] C. Dionisi,et al. Search for low-mass dark matter WIMPs with 12 ton-day exposure of DarkSide-50 , 2022, 2207.11966.
[2] Thomas Y. Chen,et al. Snowmass2021 Cosmic Frontier: The landscape of low-threshold dark matter direct detection in the next decade , 2022, 2203.08297.
[3] S. Vahsen,et al. Snowmass2021 Cosmic Frontier Dark Matter Direct Detection to the Neutrino Fog , 2022, 2203.08084.
[4] C. Zhang,et al. Evaluation of cosmogenic production of 39Ar and 42Ar for rare-event physics using underground argon , 2022, Astroparticle Physics.
[5] I. Jovanovic,et al. Performance of Hamamatsu VUV4 SiPMs for detecting liquid argon scintillation , 2022, 2202.02977.
[6] S. Schönert,et al. Scintillation and optical properties of xenon-doped liquid argon , 2021, Journal of Instrumentation.
[7] K. Wu,et al. Can sub-GeV dark matter coherently scatter on the electrons in the Atom? , 2021, 2112.11810.
[8] C. O’Hare. New Definition of the Neutrino Floor for Direct Dark Matter Searches. , 2021, Physical review letters.
[9] C. Dionisi,et al. Calibration of the liquid argon ionization response to low energy electronic and nuclear recoils with DarkSide-50 , 2021, Physical Review D.
[10] Y.Wang,et al. A study of events with photoelectric emission in the DarkSide-50 liquid argon Time Projection Chamber , 2021, 2107.08015.
[11] R. Lang,et al. Recommended conventions for reporting results from direct dark matter searches , 2021, The European Physical Journal C.
[12] M. Mooney,et al. A Review of Basic Energy Reconstruction Techniques in Liquid Xenon and Argon Detectors for Dark Matter and Neutrino Physics Using NEST , 2021, Instruments.
[13] G. Perrin,et al. Improved GRAVITY astrometric accuracy from modeling optical aberrations , 2021, Astronomy & Astrophysics.
[14] K. S. Hansen,et al. First Measurement of Coherent Elastic Neutrino-Nucleus Scattering on Argon. , 2021, Physical review letters.
[15] A. Pocar,et al. An online radon monitor for low-background detector assembly facilities , 2021, The European Physical Journal C.
[16] Y. Wang,et al. Pulse shape study of the fast scintillation light emitted from xenon-doped liquid argon using silicon photomultipliers , 2020, Journal of Instrumentation.
[17] H. R. Harris,et al. Light Dark Matter Search with a High-Resolution Athermal Phonon Detector Operated above Ground. , 2020, Physical review letters.
[18] L. Roszkowski,et al. Constraints on dark matter-nucleon effective couplings in the presence of kinematically distinct halo substructures using the DEAP-3600 detector , 2020, Physical Review D.
[19] A. Drlica-Wagner,et al. SENSEI: Direct-Detection Results on sub-GeV Dark Matter from a New Skipper CCD. , 2020, Physical review letters.
[20] K. Abe,et al. Development of low radioactive molecular sieves for ultra-low background particle physics experiment , 2019, Journal of Instrumentation.
[21] R. Catena,et al. Atomic responses to general dark matter-electron interactions , 2019, 1912.08204.
[22] K. Mitev,et al. Partition Coefficients and Diffusion Lengths of 222Rn in Some Polymers at Different Temperatures , 2019, International journal of environmental research and public health.
[23] V. C. Antochi,et al. Search for Light Dark Matter Interactions Enhanced by the Migdal Effect or Bremsstrahlung in XENON1T. , 2019, Physical review letters.
[24] D. Amidei,et al. Constraints on Light Dark Matter Particles Interacting with Electrons from DAMIC at SNOLAB. , 2019, Physical review letters.
[25] V. C. Antochi,et al. Light Dark Matter Search with Ionization Signals in XENON1T. , 2019, Physical Review Letters.
[26] B. Smith,et al. Electromagnetic backgrounds and potassium-42 activity in the DEAP-3600 dark matter detector , 2019, Physical Review D.
[27] C. Pagliarone,et al. First results from the CRESST-III low-mass dark matter program , 2019, Physical Review D.
[28] B. Jones,et al. Emanation and bulk fluorescence in liquid argon from tetraphenyl butadiene wavelength shifting coatings , 2019, Journal of Instrumentation.
[29] B. Smith,et al. Search for dark matter with a 231-day exposure of liquid argon using DEAP-3600 at SNOLAB , 2019, Physical Review D.
[30] Nicola Zorzi,et al. NUV-Sensitive Silicon Photomultiplier Technologies Developed at Fondazione Bruno Kessler , 2019, Sensors.
[31] R. Webb,et al. Results of a Search for Sub-GeV Dark Matter Using 2013 LUX Data. , 2018, Physical review letters.
[32] M. Dunford,et al. Design and construction of the DEAP-3600 dark matter detector , 2017, Astroparticle Physics.
[33] A. D. Ludovico,et al. Simultaneous precision spectroscopy of pp , Be7 , and pep solar neutrinos with Borexino Phase-II , 2017, Physical Review D.
[34] Arjan J. Koning,et al. TENDL: Complete Nuclear Data Library for Innovative Nuclear Science and Technology , 2019, Nuclear Data Sheets.
[35] E Aprile,et al. Dark Matter Search Results from a One Ton-Year Exposure of XENON1T. , 2018, Physical review letters.
[36] Chris Stanford,et al. Surface background suppression in liquid argon dark matter detectors using a newly discovered time component of tetraphenyl-butadiene scintillation , 2018, Physical Review D.
[37] C. Dionisi,et al. DarkSide-50 532-day dark matter search with low-radioactivity argon , 2018, Physical Review D.
[38] G. B. Suffritti,et al. Constraints on Sub-GeV Dark-Matter-Electron Scattering from the DarkSide-50 Experiment. , 2018, Physical review letters.
[39] G. B. Suffritti,et al. Low-Mass Dark Matter Search with the DarkSide-50 Experiment. , 2018, Physical review letters.
[40] B. Pritychenko,et al. The experimental nuclear reaction data (EXFOR): Extended computer database and Web retrieval system , 2018, 1802.05714.
[41] D. A. Semenov,et al. Electroluminescence pulse shape and electron diffusion in liquid argon measured in a dual-phase TPC , 2018, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment.
[42] Y. Wang,et al. Measurement of the liquid argon energy response to nuclear and electronic recoils , 2018, Physical Review D.
[43] P. Sorensen,et al. Two distinct components of the delayed single electron noise in liquid xenon emission detectors , 2017, 1711.07025.
[44] Betty A. Young,et al. Results from the Super Cryogenic Dark Matter Search Experiment at Soudan. , 2017, Physical review letters.
[45] S. Cebrián,et al. Cosmogenic production of tritium in dark matter detectors , 2017, 1706.05818.
[46] C. Galbiati,et al. Development of a Very Low-Noise Cryogenic Preamplifier for Large-Area SiPM Devices , 2017, IEEE Transactions on Nuclear Science.
[47] Development of a Novel Single-Channel, 24 cm2, SiPM-Based, Cryogenic Photodetector , 2017, IEEE Transactions on Nuclear Science.
[48] M. Xiao,et al. Dark Matter Results from 54-Ton-Day Exposure of PandaX-II Experiment. , 2017, Physical review letters.
[49] S. Klein,et al. Observation of coherent elastic neutrino-nucleus scattering , 2017, Science.
[50] C. Piemonte,et al. DarkSide-20k: A 20 tonne two-phase LAr TPC for direct dark matter detection at LNGS , 2017, The European Physical Journal Plus.
[51] M. Ibe,et al. Migdal effect in dark matter direct detection experiments , 2017, Journal of High Energy Physics.
[52] C. Dionisi,et al. Simulation of argon response and light detection in the DarkSide-50 dual phase TPC , 2017, 1707.05630.
[53] D. A. Semenov,et al. Cryogenic Characterization of FBK RGB-HD SiPMs , 2017, 1705.07028.
[54] R. Essig,et al. New constraints and prospects for sub-GeV dark matter scattering off electrons in xenon , 2017, 1703.00910.
[55] P. Meyers,et al. Radiogenic neutron yield calculations for low-background experiments , 2017, 1702.02465.
[56] C. Piemonte,et al. Cryogenic Characterization of FBK HD Near-UV Sensitive SiPMs , 2016, IEEE Transactions on Electron Devices.
[57] S. R. Golwala,et al. Projected Sensitivity of the SuperCDMS SNOLAB experiment , 2016, 1610.00006.
[58] S Fiorucci,et al. Results from a Search for Dark Matter in the Complete LUX Exposure. , 2016, Physical review letters.
[59] S. Basu,et al. A New Generation of Standard Solar Models , 2016, 1611.09867.
[60] F. V. Massoli,et al. DARWIN: towards the ultimate dark matter detector , 2016, 1606.07001.
[61] Joss Bland-Hawthorn,et al. The Galaxy in Context: Structural, Kinematic, and Integrated Properties , 2016, 1602.07702.
[62] K. Arisaka,et al. Results from the first use of low radioactivity argon in a dark matter search , 2015, 1510.00702.
[63] M. Fernández-Serra,et al. Direct detection of sub-GeV dark matter with semiconductor targets , 2015, 1509.01598.
[64] M.Tanaka,et al. Performance of VUV-sensitive MPPC for Liquid Argon Scintillation Light , 2015, 1505.00091.
[65] S Priya,et al. Dark Matter Search Results from the PICO-2L C3F8 Bubble Chamber. , 2015, Physical review letters.
[66] F. Dejongh,et al. Measurement of Scintillation and Ionization Yield and Scintillation Pulse Shape from Nuclear Recoils in Liquid Argon , 2014, 1406.4825.
[67] P. Mosteiro,et al. A Fluka study of underground cosmogenic neutron production , 2014, 1406.6081.
[68] P. W. Chin,et al. Overview of the FLUKA code , 2014, ICS 2014.
[69] KIPACStanford,et al. Implication of neutrino backgrounds on the reach of next generation dark matter direct detection experiments , 2013, 1307.5458.
[70] S. Elliott,et al. Combined analysis of all three phases of solar neutrino data from the Sudbury Neutrino Observatory , 2011, 1109.0763.
[71] F. Calaprice,et al. First Large Scale Production of Low Radioactivity Argon From Underground Sources , 2012, 1204.6024.
[72] R. Veenhof,et al. A simulation toolkit for electroluminescence assessment in rare event experiments , 2011, 1103.6237.
[73] K. Shibata,et al. JENDL-4.0: A New Library for Nuclear Science and Engineering , 2011 .
[74] F. Kahlhoefer,et al. Interplay between scintillation and ionization in liquid xenon Dark Matter searches , 2010, 1011.3990.
[75] A. Hime,et al. A Radon Progeny Deposition Model , 2010, 1101.0126.
[76] K. Cranmer,et al. Asymptotic formulae for likelihood-based tests of new physics , 2010, 1007.1727.
[77] A. Konobeyev,et al. High energy activation data library (HEAD-2009) , 2010, 1003.2225.
[78] W. Dehnen,et al. Local kinematics and the local standard of rest , 2009, 0912.3693.
[79] A. Bondar,et al. Electron emission properties of two-phase argon and argon-nitrogen avalanche detectors , 2009, 0908.2915.
[80] J. Back,et al. ACTIVIA: Calculation of isotope production cross-sections and yields , 2007, 0709.3472.
[81] D. Mckinsey,et al. Use of activated charcoal for the purification of neon in the CLEAN experiment , 2007 .
[82] B. Gibson,et al. The RAVE Survey: Constraining the Local Galactic Escape Speed , 2006, Proceedings of the International Astronomical Union.
[83] D. Nikezić,et al. Exposures to 222Rn and its progeny derived from implanted 210Po activity , 2006 .
[84] T. Montaruli,et al. The atmospheric neutrino fluxes below 100 MeV: the FLUKA results , 2005 .
[85] H.H.K. Tang,et al. Measurement of the flux and energy spectrum of cosmic-ray induced neutrons on the ground , 2004, IEEE Transactions on Nuclear Science.
[86] A. Dell'Acqua,et al. Geant4 - A simulation toolkit , 2003 .
[87] A. Read. Presentation of search results: the CLs technique , 2002 .
[88] H. Janka,et al. Monte Carlo Study of Supernova Neutrino Spectra Formation , 2002, astro-ph/0208035.
[89] C. H. Tsao,et al. Updated Partial Cross Sections of Proton-Nucleus Reactions , 1998 .
[90] J. F. Ziegler,et al. Terrestrial cosmic ray intensities , 1998, IBM J. Res. Dev..
[91] Hitachi,et al. Scintillation and ionization in allene-doped liquid argon irradiated with 18O and 36Ar ions of 30 MeV/u. , 1996, Physical review. B, Condensed matter.
[92] J. D. Lewin,et al. Review of mathematics, numerical factors, and corrections for dark matter experiments based on elastic nuclear recoil , 1996 .
[93] J. Baker,et al. Tritium process applications using SAES getters for purification and collection from inert gas streams , 1995 .
[94] C. Martoff,et al. COSMO - a program to estimate spallation radioactivity produced in a pure substance by exposure to cosmic radiation on the earth , 1992 .
[95] H. Matsui,et al. Energy resolution for 1 MeV electrons in liquid argon doped with allene , 1990 .
[96] G. Bakale,et al. Effect of an electric field on electron attachment to sulfur hexafluoride, nitrous oxide, and molecular oxygen in liquid argon and xenon , 1976 .
[97] S. Kubota,et al. Ionization yield in xenon-doped liquid argon , 1974 .
[98] D. Swan. Electron Attachment Processes in Liquid Argon containing Oxygen or Nitrogen Impurity , 1963 .