Sensitivity projections for a dual-phase argon TPC optimized for light dark matter searches through the ionization channel

Dark matter lighter than 10 GeV /c 2 encompasses a promising range of candidates. A conceptual design for a new detector, DarkSide-LowMass, is presented, based on the DarkSide-50 detector and progress toward DarkSide-20k, optimized for a low-threshold electron-counting measurement. Sensitivity to light dark matter is explored for various potential energy thresholds and background rates. These studies show that DarkSide-LowMass can achieve sensitivity to light dark matter down to the solar neutrino floor for GeV-scale masses and significant sensitivity down to 10 MeV /c 2 considering the Migdal effect or interactions with electrons. Requirements for optimizing the detector’s sensitivity are explored, as are potential sensitivity gains from modeling and mitigating spurious electron backgrounds that may dominate the signal at the lowest energies.

C. Dionisi | K. Kondo | M. Rescigno | M. Rossi | O. Dadoun | A. Moggi | B. Smith | S. Cavuoti | P. Musico | P. Barrillon | S. D'Auria | S. Cecco | F. Hubaut | V. Ippolito | E. Guirriec | L. Mapelli | P. Pralavorio | F. Ragusa | J. Vossebeld | I. Wingerter-Seez | Y. Wang | M. Lai | W. Bonivento | S. Albergo | A. Tricomi | A. Alton | G. Batignani | M. Giorgi | L. Cifarelli | M. Pallavicini | G. Covone | M. Lissia | P. Pegoraro | S. Sulis | F. Retière | C. Muscas | L. Consiglio | P. Castello | G. Filippis | V. Cataudella | D. Franco | M. Gromov | A. Renshaw | A. Sheshukov | T. Hugues | S. Bussino | F. Capua | E. Paoloni | A. Sokolov | M. Guerzoni | S. Davini | A. Derbin | C. Galbiati | C. Ghiano | A. Ianni | G. Korga | I. Machulin | V. Muratova | A. Pocar | A. Razeto | M. Skorokhvatov | O. Smirnov | Y. Suvorov | R. Tartaglia | G. Testera | G. Zuzel | A. Zani | L. Pandola | G. Paternoster | A. Masoni | A. Capra | L. Noto | S. Stracka | F. Dordei | M. Spangenberg | F. Raffaelli | M. Daniel | A. McDonald | M. Boulay | A. Hallin | P. Skensved | A. Tonazzo | I. Manthos | S. Pasquale | A. Margotti | R. Nania | C. Mariani | J. Maricic | R. Milincic | R. Santorelli | R. Diaz | C. Cicalo | D. Gruttola | G. Scioli | N. Funicello | E. Scapparone | D. Semenov | A. Ramírez | A. Hamer | C. Jillings | P. Amaudruz | G. Rosa | A. Gendotti | C. Giganti | S. Horikawa | J. Nowak | A. Rubbia | K. Mavrokoridis | F. Pietropaolo | S. Pordes | Y. Ramachers | A. Szelc | K. Pelczar | O. Samoylov | P. Franchini | L. Doria | R. Wheadon | J. Busto | O. Azzolini | E. Chyhyrynets | C. Pira | D. Santone | J. Monroe | P. Cavalcante | A. Chepurnov | S. Mari | G. Dellacasa | C. Martoff | A. Buzulutskov | I. Albuquerque | C. Pellegrino | A. Shchagin | A. Kubankin | A. Basco | M. Kuss | V. Cocco | F. Perotti | M. Mart'inez | H. Back | A. Caminata | L. Pagani | E. Pantic | F. Resnati | G. Giovanetti | C. Savarese | S. Westerdale | T. Viant | G. Fiorillo | C. Kendziora | M. Harańczyk | I. Kochanek | M. Gulino | G. Longo | A. Oleinik | M. Ave | A. Franceschi | T. Napolitano | M. Garbini | M. Uffelen | S. Sanfilippo | N. Canci | M. Razeti | M. Wada | A. Falco | V. Strickland | P. D. Stefano | E. Hungerford | T. Alexander | B. Bottino | M. Cadeddu | M. Cadoni | M. Carlini | A. Devoto | F. Gabriele | M. Guan | B. Hackett | E. Unzhakov | A. Vishneva | T. Thorpe | G. Keppel | S. Copello | D. Auty | R. Wojaczy'nski | C. Ripoli | A. Grobov | V. Pesudo | M. Stringer | E. Leason | P. G. Abia | A. Gola | E. Frolov | I. Nikulin | S. Piacentini | A. Roberts | A. Khomyakov | M. Zykova | R. Avetisov | A. O. D. Sol'orzano | M. Kimura | G. G. D. Cortona | M. Morrocchi | A. Mazzi | G. Gallina | K. Nikolopoulos | A. D. Candia | N. Cargioli | E. Mozhevitina | K. Thieme | M. Commara | A. Taylor | G. Buccino | A. Zabihi | P. Agnes | A. B. Olmedo | E. Borisova | M. Caravati | J. M. C. Ruiz | S. Chashin | G. Dolganov | R. A. Giampaolo | V. Oleynikov | L. Rignanese | J. Rode | L. Romero | E. Sandford | A. Steri | T. Erjavec | P. Kachru | A. Marini | S. Caprioli | L. Lidey | M. A. Corona | A. Moharana | D. Poehlmann | Y. Xie | E. Berzin | J. Hall | J. Taylor | A. Rivetti | M. Nessi | R. Stefanizzi | C. Guo | A. Zichichi | A. Messina | D. Cintas | G. Gallus | V. Casanueva | M. Wójcik | S. Cebrián | T. Hessel | D. Price | C. Yang | R. Vogelaar | Z. Balmforth | L. Luzzi | M. F. Díaz | I. Ahmad | I. Avetisov | V. Barbarian | A. Bondar | M. C'ardenas-Montes | E. C. Vilda | S. Cross | P. Czudak | M. D’Aniello | M. R. Rolo | D. Gahan | D. Gorman | G. Grauso | H. Helton | S. Hill | A. Kemp | S. Koulosousas | M. Ku'zniak | X. Li | J. Lipp | O. Macfadyen | M. Mart'inez | T. Mr'oz | G. Nieradka | K. Olchansky | P. Organtini | N. Pino | C. Roberts | G. Rogers | S. Sadashivajois | T. Saffold | M. Simeone | T. Smirnova | A. Sung | C. Turkoug | S. Tedesco | S. Torres-Lara | T. V. John | S. Viel | M. Walczak | L. Williams | T. Wright | P. Zakhary | M. Mart'inez | C. Cicalò | G. G. Cortona | M. Rolo | Y. Xie

[1]  C. Dionisi,et al.  Search for low-mass dark matter WIMPs with 12 ton-day exposure of DarkSide-50 , 2022, 2207.11966.

[2]  Thomas Y. Chen,et al.  Snowmass2021 Cosmic Frontier: The landscape of low-threshold dark matter direct detection in the next decade , 2022, 2203.08297.

[3]  S. Vahsen,et al.  Snowmass2021 Cosmic Frontier Dark Matter Direct Detection to the Neutrino Fog , 2022, 2203.08084.

[4]  C. Zhang,et al.  Evaluation of cosmogenic production of 39Ar and 42Ar for rare-event physics using underground argon , 2022, Astroparticle Physics.

[5]  I. Jovanovic,et al.  Performance of Hamamatsu VUV4 SiPMs for detecting liquid argon scintillation , 2022, 2202.02977.

[6]  S. Schönert,et al.  Scintillation and optical properties of xenon-doped liquid argon , 2021, Journal of Instrumentation.

[7]  K. Wu,et al.  Can sub-GeV dark matter coherently scatter on the electrons in the Atom? , 2021, 2112.11810.

[8]  C. O’Hare New Definition of the Neutrino Floor for Direct Dark Matter Searches. , 2021, Physical review letters.

[9]  C. Dionisi,et al.  Calibration of the liquid argon ionization response to low energy electronic and nuclear recoils with DarkSide-50 , 2021, Physical Review D.

[10]  Y.Wang,et al.  A study of events with photoelectric emission in the DarkSide-50 liquid argon Time Projection Chamber , 2021, 2107.08015.

[11]  R. Lang,et al.  Recommended conventions for reporting results from direct dark matter searches , 2021, The European Physical Journal C.

[12]  M. Mooney,et al.  A Review of Basic Energy Reconstruction Techniques in Liquid Xenon and Argon Detectors for Dark Matter and Neutrino Physics Using NEST , 2021, Instruments.

[13]  G. Perrin,et al.  Improved GRAVITY astrometric accuracy from modeling optical aberrations , 2021, Astronomy & Astrophysics.

[14]  K. S. Hansen,et al.  First Measurement of Coherent Elastic Neutrino-Nucleus Scattering on Argon. , 2021, Physical review letters.

[15]  A. Pocar,et al.  An online radon monitor for low-background detector assembly facilities , 2021, The European Physical Journal C.

[16]  Y. Wang,et al.  Pulse shape study of the fast scintillation light emitted from xenon-doped liquid argon using silicon photomultipliers , 2020, Journal of Instrumentation.

[17]  H. R. Harris,et al.  Light Dark Matter Search with a High-Resolution Athermal Phonon Detector Operated above Ground. , 2020, Physical review letters.

[18]  L. Roszkowski,et al.  Constraints on dark matter-nucleon effective couplings in the presence of kinematically distinct halo substructures using the DEAP-3600 detector , 2020, Physical Review D.

[19]  A. Drlica-Wagner,et al.  SENSEI: Direct-Detection Results on sub-GeV Dark Matter from a New Skipper CCD. , 2020, Physical review letters.

[20]  K. Abe,et al.  Development of low radioactive molecular sieves for ultra-low background particle physics experiment , 2019, Journal of Instrumentation.

[21]  R. Catena,et al.  Atomic responses to general dark matter-electron interactions , 2019, 1912.08204.

[22]  K. Mitev,et al.  Partition Coefficients and Diffusion Lengths of 222Rn in Some Polymers at Different Temperatures , 2019, International journal of environmental research and public health.

[23]  V. C. Antochi,et al.  Search for Light Dark Matter Interactions Enhanced by the Migdal Effect or Bremsstrahlung in XENON1T. , 2019, Physical review letters.

[24]  D. Amidei,et al.  Constraints on Light Dark Matter Particles Interacting with Electrons from DAMIC at SNOLAB. , 2019, Physical review letters.

[25]  V. C. Antochi,et al.  Light Dark Matter Search with Ionization Signals in XENON1T. , 2019, Physical Review Letters.

[26]  B. Smith,et al.  Electromagnetic backgrounds and potassium-42 activity in the DEAP-3600 dark matter detector , 2019, Physical Review D.

[27]  C. Pagliarone,et al.  First results from the CRESST-III low-mass dark matter program , 2019, Physical Review D.

[28]  B. Jones,et al.  Emanation and bulk fluorescence in liquid argon from tetraphenyl butadiene wavelength shifting coatings , 2019, Journal of Instrumentation.

[29]  B. Smith,et al.  Search for dark matter with a 231-day exposure of liquid argon using DEAP-3600 at SNOLAB , 2019, Physical Review D.

[30]  Nicola Zorzi,et al.  NUV-Sensitive Silicon Photomultiplier Technologies Developed at Fondazione Bruno Kessler , 2019, Sensors.

[31]  R. Webb,et al.  Results of a Search for Sub-GeV Dark Matter Using 2013 LUX Data. , 2018, Physical review letters.

[32]  M. Dunford,et al.  Design and construction of the DEAP-3600 dark matter detector , 2017, Astroparticle Physics.

[33]  A. D. Ludovico,et al.  Simultaneous precision spectroscopy of pp , Be7 , and pep solar neutrinos with Borexino Phase-II , 2017, Physical Review D.

[34]  Arjan J. Koning,et al.  TENDL: Complete Nuclear Data Library for Innovative Nuclear Science and Technology , 2019, Nuclear Data Sheets.

[35]  E Aprile,et al.  Dark Matter Search Results from a One Ton-Year Exposure of XENON1T. , 2018, Physical review letters.

[36]  Chris Stanford,et al.  Surface background suppression in liquid argon dark matter detectors using a newly discovered time component of tetraphenyl-butadiene scintillation , 2018, Physical Review D.

[37]  C. Dionisi,et al.  DarkSide-50 532-day dark matter search with low-radioactivity argon , 2018, Physical Review D.

[38]  G. B. Suffritti,et al.  Constraints on Sub-GeV Dark-Matter-Electron Scattering from the DarkSide-50 Experiment. , 2018, Physical review letters.

[39]  G. B. Suffritti,et al.  Low-Mass Dark Matter Search with the DarkSide-50 Experiment. , 2018, Physical review letters.

[40]  B. Pritychenko,et al.  The experimental nuclear reaction data (EXFOR): Extended computer database and Web retrieval system , 2018, 1802.05714.

[41]  D. A. Semenov,et al.  Electroluminescence pulse shape and electron diffusion in liquid argon measured in a dual-phase TPC , 2018, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment.

[42]  Y. Wang,et al.  Measurement of the liquid argon energy response to nuclear and electronic recoils , 2018, Physical Review D.

[43]  P. Sorensen,et al.  Two distinct components of the delayed single electron noise in liquid xenon emission detectors , 2017, 1711.07025.

[44]  Betty A. Young,et al.  Results from the Super Cryogenic Dark Matter Search Experiment at Soudan. , 2017, Physical review letters.

[45]  S. Cebrián,et al.  Cosmogenic production of tritium in dark matter detectors , 2017, 1706.05818.

[46]  C. Galbiati,et al.  Development of a Very Low-Noise Cryogenic Preamplifier for Large-Area SiPM Devices , 2017, IEEE Transactions on Nuclear Science.

[47]  Development of a Novel Single-Channel, 24 cm2, SiPM-Based, Cryogenic Photodetector , 2017, IEEE Transactions on Nuclear Science.

[48]  M. Xiao,et al.  Dark Matter Results from 54-Ton-Day Exposure of PandaX-II Experiment. , 2017, Physical review letters.

[49]  S. Klein,et al.  Observation of coherent elastic neutrino-nucleus scattering , 2017, Science.

[50]  C. Piemonte,et al.  DarkSide-20k: A 20 tonne two-phase LAr TPC for direct dark matter detection at LNGS , 2017, The European Physical Journal Plus.

[51]  M. Ibe,et al.  Migdal effect in dark matter direct detection experiments , 2017, Journal of High Energy Physics.

[52]  C. Dionisi,et al.  Simulation of argon response and light detection in the DarkSide-50 dual phase TPC , 2017, 1707.05630.

[53]  D. A. Semenov,et al.  Cryogenic Characterization of FBK RGB-HD SiPMs , 2017, 1705.07028.

[54]  R. Essig,et al.  New constraints and prospects for sub-GeV dark matter scattering off electrons in xenon , 2017, 1703.00910.

[55]  P. Meyers,et al.  Radiogenic neutron yield calculations for low-background experiments , 2017, 1702.02465.

[56]  C. Piemonte,et al.  Cryogenic Characterization of FBK HD Near-UV Sensitive SiPMs , 2016, IEEE Transactions on Electron Devices.

[57]  S. R. Golwala,et al.  Projected Sensitivity of the SuperCDMS SNOLAB experiment , 2016, 1610.00006.

[58]  S Fiorucci,et al.  Results from a Search for Dark Matter in the Complete LUX Exposure. , 2016, Physical review letters.

[59]  S. Basu,et al.  A New Generation of Standard Solar Models , 2016, 1611.09867.

[60]  F. V. Massoli,et al.  DARWIN: towards the ultimate dark matter detector , 2016, 1606.07001.

[61]  Joss Bland-Hawthorn,et al.  The Galaxy in Context: Structural, Kinematic, and Integrated Properties , 2016, 1602.07702.

[62]  K. Arisaka,et al.  Results from the first use of low radioactivity argon in a dark matter search , 2015, 1510.00702.

[63]  M. Fernández-Serra,et al.  Direct detection of sub-GeV dark matter with semiconductor targets , 2015, 1509.01598.

[64]  M.Tanaka,et al.  Performance of VUV-sensitive MPPC for Liquid Argon Scintillation Light , 2015, 1505.00091.

[65]  S Priya,et al.  Dark Matter Search Results from the PICO-2L C3F8 Bubble Chamber. , 2015, Physical review letters.

[66]  F. Dejongh,et al.  Measurement of Scintillation and Ionization Yield and Scintillation Pulse Shape from Nuclear Recoils in Liquid Argon , 2014, 1406.4825.

[67]  P. Mosteiro,et al.  A Fluka study of underground cosmogenic neutron production , 2014, 1406.6081.

[68]  P. W. Chin,et al.  Overview of the FLUKA code , 2014, ICS 2014.

[69]  KIPACStanford,et al.  Implication of neutrino backgrounds on the reach of next generation dark matter direct detection experiments , 2013, 1307.5458.

[70]  S. Elliott,et al.  Combined analysis of all three phases of solar neutrino data from the Sudbury Neutrino Observatory , 2011, 1109.0763.

[71]  F. Calaprice,et al.  First Large Scale Production of Low Radioactivity Argon From Underground Sources , 2012, 1204.6024.

[72]  R. Veenhof,et al.  A simulation toolkit for electroluminescence assessment in rare event experiments , 2011, 1103.6237.

[73]  K. Shibata,et al.  JENDL-4.0: A New Library for Nuclear Science and Engineering , 2011 .

[74]  F. Kahlhoefer,et al.  Interplay between scintillation and ionization in liquid xenon Dark Matter searches , 2010, 1011.3990.

[75]  A. Hime,et al.  A Radon Progeny Deposition Model , 2010, 1101.0126.

[76]  K. Cranmer,et al.  Asymptotic formulae for likelihood-based tests of new physics , 2010, 1007.1727.

[77]  A. Konobeyev,et al.  High energy activation data library (HEAD-2009) , 2010, 1003.2225.

[78]  W. Dehnen,et al.  Local kinematics and the local standard of rest , 2009, 0912.3693.

[79]  A. Bondar,et al.  Electron emission properties of two-phase argon and argon-nitrogen avalanche detectors , 2009, 0908.2915.

[80]  J. Back,et al.  ACTIVIA: Calculation of isotope production cross-sections and yields , 2007, 0709.3472.

[81]  D. Mckinsey,et al.  Use of activated charcoal for the purification of neon in the CLEAN experiment , 2007 .

[82]  B. Gibson,et al.  The RAVE Survey: Constraining the Local Galactic Escape Speed , 2006, Proceedings of the International Astronomical Union.

[83]  D. Nikezić,et al.  Exposures to 222Rn and its progeny derived from implanted 210Po activity , 2006 .

[84]  T. Montaruli,et al.  The atmospheric neutrino fluxes below 100 MeV: the FLUKA results , 2005 .

[85]  H.H.K. Tang,et al.  Measurement of the flux and energy spectrum of cosmic-ray induced neutrons on the ground , 2004, IEEE Transactions on Nuclear Science.

[86]  A. Dell'Acqua,et al.  Geant4 - A simulation toolkit , 2003 .

[87]  A. Read Presentation of search results: the CLs technique , 2002 .

[88]  H. Janka,et al.  Monte Carlo Study of Supernova Neutrino Spectra Formation , 2002, astro-ph/0208035.

[89]  C. H. Tsao,et al.  Updated Partial Cross Sections of Proton-Nucleus Reactions , 1998 .

[90]  J. F. Ziegler,et al.  Terrestrial cosmic ray intensities , 1998, IBM J. Res. Dev..

[91]  Hitachi,et al.  Scintillation and ionization in allene-doped liquid argon irradiated with 18O and 36Ar ions of 30 MeV/u. , 1996, Physical review. B, Condensed matter.

[92]  J. D. Lewin,et al.  Review of mathematics, numerical factors, and corrections for dark matter experiments based on elastic nuclear recoil , 1996 .

[93]  J. Baker,et al.  Tritium process applications using SAES getters for purification and collection from inert gas streams , 1995 .

[94]  C. Martoff,et al.  COSMO - a program to estimate spallation radioactivity produced in a pure substance by exposure to cosmic radiation on the earth , 1992 .

[95]  H. Matsui,et al.  Energy resolution for 1 MeV electrons in liquid argon doped with allene , 1990 .

[96]  G. Bakale,et al.  Effect of an electric field on electron attachment to sulfur hexafluoride, nitrous oxide, and molecular oxygen in liquid argon and xenon , 1976 .

[97]  S. Kubota,et al.  Ionization yield in xenon-doped liquid argon , 1974 .

[98]  D. Swan Electron Attachment Processes in Liquid Argon containing Oxygen or Nitrogen Impurity , 1963 .