Optimization of nonlinear structural resonance using the incremental harmonic balance method

Abstract We present an optimization procedure for tailoring the nonlinear structural resonant response with time-harmonic loads. A nonlinear finite element method is used for modeling beam structures with a geometric nonlinearity and the incremental harmonic balance method is applied for accurate nonlinear vibration analysis. An optimization procedure based on a gradient-based algorithm is developed and we use the adjoint method for efficient computation of design sensitivities. We consider several examples in which we find optimized beam width distributions that minimize or maximize fundamental or super-harmonic resonant responses.

[1]  Niels Olhoff,et al.  Designing vibrating beams and rotating shafts for maximum difference between adjacent natural frequencies , 1984 .

[2]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[3]  Andrew Y. T. Leung,et al.  Phase increment analysis of damped Duffing oscillators , 1989 .

[4]  Bret Stanford,et al.  Adjoint sensitivities of time-periodic nonlinear structural dynamics via model reduction , 2010 .

[5]  Francis C. Moon,et al.  Nonlinear System Identification of Systems with Periodic Limit-Cycle Response , 2005 .

[6]  Gaëtan Kerschen,et al.  Modal testing of nonlinear vibrating structures based on nonlinear normal modes: Experimental demonstration , 2011 .

[7]  Yves St-Amant,et al.  Improving the performance of a piezoelectric energy harvester using a variable thickness beam , 2010 .

[8]  G. Kerschen,et al.  Dynamic testing of nonlinear vibrating structures using nonlinear normal modes , 2011 .

[9]  M. Bendsøe,et al.  Topology Optimization: "Theory, Methods, And Applications" , 2011 .

[10]  Bin Niu,et al.  Optimum design of band-gap beam structures , 2012 .

[11]  Rmc Rob Mestrom,et al.  Simulations and experiments of hardening and softening resonances in a clamped-clamped beam MEMS resonator , 2010 .

[12]  Allen Labryer,et al.  A harmonic balance approach for large-scale problems in nonlinear structural dynamics , 2010 .

[13]  Y. K. Cheung,et al.  Amplitude Incremental Variational Principle for Nonlinear Vibration of Elastic Systems , 1981 .

[14]  M. Crisfield A FAST INCREMENTAL/ITERATIVE SOLUTION PROCEDURE THAT HANDLES "SNAP-THROUGH" , 1981 .

[15]  S. Narayanan,et al.  Bifurcation and chaos in geared rotor bearing system by incremental harmonic balance method , 1999 .

[16]  F. H. Ling,et al.  An Alternating Frequency/Time Domain Method for Calculating the Steady-State Response of Nonlinear Dynamic Systems , 2007 .

[17]  Evgeny Petrov Advanced analysis and optimization of nonlinear resonance vibrations in gas-turbine structures with friction and gaps , 2011 .

[18]  S. H. A. Chen,et al.  Application of the incremental harmonic balance method to cubic non-linearity systems , 1990 .

[19]  Ephrahim Garcia,et al.  Beam Shape Optimization for Power Harvesting , 2010 .

[20]  Hamid Ahmadian,et al.  Generic element formulation for modelling bolted lap joints , 2007 .

[21]  P. Orkwis,et al.  Adaptive harmonic balance method for nonlinear time-periodic flows , 2004 .

[22]  Alexander F. Vakakis,et al.  NONLINEAR NORMAL MODES , 2001 .

[23]  N. Olhoff,et al.  Multiple eigenvalues in structural optimization problems , 1994 .

[24]  Niels Olhoff,et al.  Optimization of Vibrating Beams with Respect to Higher Order Natural Frequencies , 1976 .

[25]  E. Schnack,et al.  A new optimality criteria method for shape optimization of natural frequency problems , 2006 .

[26]  K. Svanberg The method of moving asymptotes—a new method for structural optimization , 1987 .

[27]  Steven W. Shaw,et al.  Nonlinear Dynamics and Its Applications in Micro- and Nanoresonators , 2010 .

[28]  Bret Stanford,et al.  Stability and power optimality in time-periodic flapping wing structures , 2012 .

[29]  Roman Lewandowski,et al.  Non-linear, steady-state vibration of structures by harmonic balance/finite element method , 1992 .

[30]  Jeffrey P. Thomas,et al.  Nonlinear Inviscid Aerodynamic Effects on Transonic Divergence, Flutter, and Limit-Cycle Oscillations , 2001 .

[31]  Jon Juel Thomsen,et al.  Vibrations and Stability , 2003 .

[32]  Sang-Gook Kim,et al.  Ultra-wide bandwidth piezoelectric energy harvesting , 2011 .

[33]  Jean-Jacques Sinou,et al.  A new treatment for predicting the self-excited vibrations of nonlinear systems with frictional interfaces: The Constrained Harmonic Balance Method, with application to disc brake squeal , 2009 .

[34]  Roman Lewandowski,et al.  Computational formulation for periodic vibration of geometrically nonlinear structures—part 1: Theoretical background , 1997 .

[35]  Gaëtan Kerschen,et al.  Nonlinear normal modes, Part II: Toward a practical computation using numerical continuation techniques , 2009 .

[36]  Jean-Jacques Sinou,et al.  Nonlinear vibrations of a mechanical system with non-regular nonlinearities and uncertainties , 2013, Commun. Nonlinear Sci. Numer. Simul..

[37]  Jeffrey P. Thomas,et al.  Computation of Unsteady Nonlinear Flows in Cascades Using a Harmonic Balance Technique , 2002 .

[38]  Low Vibration Sensitivity MEMS Resonators , 2007, 2007 IEEE International Frequency Control Symposium Joint with the 21st European Frequency and Time Forum.

[39]  Andrew Y. T. Leung,et al.  Non-linear steady state vibration of frames by finite element method , 1989 .

[40]  N. Olhoff,et al.  Topological design of freely vibrating continuum structures for maximum values of simple and multiple eigenfrequencies and frequency gaps , 2007 .

[41]  Alexander P. Seyranian,et al.  Sensitivity Analysis of Multiple Eigenvalues , 1993 .

[42]  Christophe Vergez,et al.  A high-order, purely frequency based harmonic balance formulation for continuation of periodic solutions: The case of non-polynomial nonlinearities , 2008, 0808.3839.

[43]  A. Leung,et al.  Non-linear vibration of coupled duffing oscillators by an improved incremental harmonic balance method , 1995 .

[44]  S. H. A. Chen,et al.  Nonlinear Vibration of Plane Structures by Finite Element and Incremental Harmonic Balance Method , 2001 .

[45]  Niels Olhoff,et al.  A method of design against vibration resonance of beams and shafts , 1985 .

[46]  Walter Lacarbonara,et al.  Refined models of elastic beams undergoing large in-plane motions: Theory and experiment , 2006 .

[47]  Wei Sun,et al.  A new method for predicting the maximum vibration amplitude of periodic solution of non-linear system , 2013 .

[48]  N. Olhoff,et al.  Topological design of freely vibrating continuum structures for maximum values of simple and multiple eigenfrequencies and frequency gaps , 2007 .

[49]  R. Lewandowski Computational formulation for periodic vibration of geometrically nonlinear structures—part 2: Numerical strategy and examples , 1997 .

[50]  정원식 Non-linear 편집시스템 , 1996 .