Well-posedness for the compressible Navier–Stokes–Lamé system with a free interface

We address the system of fluid–structure interaction consisting of a compressible Navier–Stokes equation coupled with an elasticity equation, with the velocity and stress continuity requirements across the free moving interface. We prove the a priori estimates for existence of solutions when the initial velocity belongs to H 3 , the initial density is bounded from below and belongs to H 3/2+r , where r> 0, and the initial velocity of the displacement is in H 3/2+r .

[1]  J. Lions,et al.  Non homogeneous boundary value problems for second order hyperbolic operators , 1986 .

[2]  James C. Robinson,et al.  The Motion of a Fluid–Rigid Disc System at the Zero Limit of the Rigid Disc Radius , 2011, 1102.3072.

[3]  Igor Kukavica,et al.  Strong solutions for a fluid structure interaction system , 2010, Advances in Differential Equations.

[4]  Irena Lasiecka,et al.  Singular estimates and uniform stability of coupled systems of hyperbolic/parabolic PDEs , 2002 .

[5]  Atusi Tani,et al.  CLASSICAL SOLVABILITY OF THE TWO-PHASE STEFAN PROBLEM IN A VISCOUS INCOMPRESSIBLE FLUID FLOW , 2002 .

[6]  L. Medeiros,et al.  Hidden regularity for semilinear hyperbolic partial differential equations , 1988 .

[7]  Miguel Angel Fernández,et al.  An exact Block–Newton algorithm for solving fluid–structure interaction problems , 2003 .

[8]  Daniel Coutand,et al.  The Interaction between Quasilinear Elastodynamics and the Navier-Stokes Equations , 2006 .

[9]  Well-Posedness for the Linearized Motion of a Compressible Liquid with Free Surface Boundary , 2001, math/0112030.

[10]  Hantaek Bae,et al.  Solvability of the free boundary value problem of the Navier-Stokes equations , 2010 .

[11]  I. Kukavica,et al.  Solutions to a free boundary problem of fluid-structure interaction , 2012 .

[12]  Irena Lasiecka,et al.  Optimal boundary control with critical penalization for a PDE model of fluid–solid interactions , 2009 .

[13]  Sijue Wu,et al.  Well-posedness in Sobolev spaces of the full water wave problem in 3-D , 1999 .

[14]  David Lannes,et al.  Well-posedness of the water-waves equations , 2005 .

[15]  Giovanna Guidoboni,et al.  Existence of a Unique Solution to a Nonlinear Moving-Boundary Problem of Mixed Type Arising in Modeling Blood Flow , 2011 .

[16]  Irena Lasiecka,et al.  Sharp Regularity Theory for Elastic and Thermoelastic Kirchoff Equations with Free Boundary Conditions , 2000 .

[17]  J. T. Beale,et al.  The initial value problem for the navier-stokes equations with a free surface , 1981 .

[18]  M. Boulakia,et al.  A regularity result for a solid-fluid system associated to the compressible Navier-Stokes equations , 2009 .

[19]  G. Simonett,et al.  ON THE TWO-PHASE NAVIER-STOKES EQUATIONS WITH SURFACE TENSION , 2009, 0908.3327.

[20]  Irena Lasiecka,et al.  Higher Regularity of a Coupled Parabolic-Hyperbolic Fluid-Structure Interactive System , 2008 .

[21]  Semigroup Generation and ``hidden" Trace Regularity of a Dynamic Plate with Non-Monotone Boundary Feedbacks , 2010 .

[22]  Zhifei Zhang,et al.  On the free boundary problem to the two viscous immiscible fluids , 2010 .

[23]  S. Shkoller,et al.  The Interaction between Quasilinear Elastodynamics and the , 2006 .

[24]  Luis Vega,et al.  Well-posedness of the initial value problem for the Korteweg-de Vries equation , 1991 .

[25]  Jalal Shatah,et al.  Geometry and a priori estimates for free boundary problems of the Euler's equation , 2006 .

[26]  Eduard Feireisl,et al.  Dynamics of Viscous Compressible Fluids , 2004 .

[27]  Daniel Coutand,et al.  Motion of an Elastic Solid inside an Incompressible Viscous Fluid , 2005 .

[28]  Céline Grandmont,et al.  Weak solutions for a fluid-elastic structure interaction model , 2001 .

[29]  E. Feireisl,et al.  On the motion of several rigid bodies in an incompressible non-Newtonian fluid , 2008 .

[30]  Daniel Coutand,et al.  Well-posedness of the free-surface incompressible Euler equations with or without surface tension , 2005 .

[31]  L. Hou,et al.  ANALYSIS OF A LINEAR FLUID-STRUCTURE INTERACTION PROBLEM , 2003 .

[32]  M. Boulakia,et al.  Regular solutions of a problem coupling a compressible fluid and an elastic structure , 2010 .

[33]  Ben Schweizer,et al.  On the three-dimensional Euler equations with a free boundary subject to surface tension , 2005 .

[34]  Amjad Tuffaha,et al.  Smoothness of weak solutions to a nonlinear fluid-structure interaction model , 2008 .

[35]  Igor Kukavica,et al.  Strong solutions to a nonlinear fluid structure interaction system , 2009 .

[36]  R. Triggiani,et al.  Uniform stabilization of the wave equation with Dirichlet or Neumann feedback control without geometrical conditions , 1992 .

[37]  R. Kohn,et al.  Partial regularity of suitable weak solutions of the navier‐stokes equations , 1982 .

[38]  J. Zolésio,et al.  Linearization of a Coupled System of Nonlinear Elasticity and Viscous Fluid , 2011 .

[39]  D. Gérard-Varet,et al.  Regularity Issues in the Problem of Fluid Structure Interaction , 2008, 0805.2654.

[40]  Igor Kukavica,et al.  Strong solutions to a Navier–Stokes–Lamé system on a domain with a non-flat boundary , 2010 .

[41]  J. Lions Quelques méthodes de résolution de problèmes aux limites non linéaires , 1969 .

[42]  A. I. Shnirel'man ON THE GEOMETRY OF THE GROUP OF DIFFEOMORPHISMS AND THE DYNAMICS OF AN IDEAL INCOMPRESSIBLE FLUID , 1987 .

[43]  M. Horn Sharp trace regularity for the solutions of the equations of dynamic elasticity , 1996 .

[44]  G. Galdi,et al.  The Steady Motion of a Navier–Stokes Liquid Around a Rigid Body , 2007 .

[45]  Roberto Triggiani,et al.  Uniform stabilization of a coupled PDE system arising in fluid-structure interaction with boundary dissipation at the interface , 2008 .

[46]  R. Triggiani,et al.  Uniform stabilization of the wave equation with dirichlet-feedback control without geometrical conditions , 1992 .

[47]  T. Tao Nonlinear dispersive equations : local and global analysis , 2006 .

[48]  J. Lions,et al.  Non-homogeneous boundary value problems and applications , 1972 .

[49]  A. Tani Small-time existence for the three-dimensional navier-stokes equations for an incompressible fluid with a free surface , 1996 .

[50]  A. Tani,et al.  On the classical solvability of the Stefan problem in a viscous incompressible fluid flow , 1999 .

[51]  Jean-Paul Zolesio,et al.  Moving Shape Analysis and Control: Applications to Fluid Structure Interactions , 2006 .

[52]  M. Boulakia Existence of Weak Solutions for the Three-Dimensional Motion of an Elastic Structure in an Incompressible Fluid , 2007 .

[53]  Nader Masmoudi,et al.  The zero surface tension limit of three-dimensional water waves , 2009 .

[54]  Igor Kukavica,et al.  SOLUTIONS TO A FLUID-STRUCTURE INTERACTION FREE BOUNDARY PROBLEM , 2011 .