Carnobacterium maltaromaticum boosts intestinal vitamin D production to suppress colorectal cancer in female mice.

[1]  Yinglin Xia,et al.  Bacterial translocation and barrier dysfunction enhance colonic tumorigenesis , 2022, Neoplasia.

[2]  Z. Deng,et al.  Polysaccharides from soybean residue fermented by Neurospora crassa alleviate DSS-induced gut barrier damage and microbiota disturbance in mice. , 2022, Food & function.

[3]  N. Wingreen,et al.  Noisy metabolism can promote microbial cross-feeding , 2022, eLife.

[4]  A. Jemal,et al.  Cancer statistics, 2022 , 2022, CA: a cancer journal for clinicians.

[5]  Jun Yu,et al.  Lactobacillus gallinarum modulates the gut microbiota and produces anti-cancer metabolites to protect against colorectal tumourigenesis , 2021, Gut.

[6]  Jun Yu,et al.  Squalene epoxidase induces nonalcoholic steatohepatitis via binding to carbonic anhydrase 3 and is a therapeutic target. , 2021, Gastroenterology.

[7]  D. Ng,et al.  The effect of vitamin D on the occurrence and development of colorectal cancer: a systematic review and meta-analysis , 2021, International Journal of Colorectal Disease.

[8]  R. Knight,et al.  Vitamin D metabolites and the gut microbiome in older men , 2020, Nature Communications.

[9]  Jun Yu,et al.  Streptococcus thermophilus inhibits colorectal tumorigenesis through secreting β-galactosidase. , 2020, Gastroenterology.

[10]  M. Hirata,et al.  The impact of vitamin D supplementation on VDR gene expression and body composition in monozygotic twins: randomized controlled trial , 2020, Scientific Reports.

[11]  Zongxin Ling,et al.  Alterations of the Predominant Fecal Microbiota and Disruption of the Gut Mucosal Barrier in Patients with Early-Stage Colorectal Cancer , 2020, BioMed research international.

[12]  Jun Yu,et al.  Cathelicidin preserves intestinal barrier function in polymicrobial sepsis , 2020, Critical care.

[13]  G. Daube,et al.  Carnobacterium maltaromaticum as bioprotective culture in vitro and in cooked ham. , 2019, Meat science.

[14]  Sucheta A Gokhale,et al.  Provitamin D3 modulation through prebiotics supplementation: simulation based assessment , 2019, Scientific Reports.

[15]  Jun Yu,et al.  Gut microbiota in colorectal cancer: mechanisms of action and clinical applications , 2019, Nature Reviews Gastroenterology & Hepatology.

[16]  N. Mokhtar,et al.  A randomized double-blind placebo-controlled trial of probiotics in post-surgical colorectal cancer , 2019, BMC gastroenterology.

[17]  Jun Yu,et al.  Peptostreptococcus anaerobius promotes colorectal carcinogenesis and modulates tumour immunity , 2019, Nature Microbiology.

[18]  K. Yusoff,et al.  Postbiotic metabolites produced by Lactobacillus plantarum strains exert selective cytotoxicity effects on cancer cells , 2019, BMC Complementary and Alternative Medicine.

[19]  S. Wong,et al.  A Novel Peptide Interfering with proBDNF-Sortilin Interaction Alleviates Chronic Inflammatory Pain , 2019, Theranostics.

[20]  L. McMullen,et al.  Effect of chitosan, and bacteriocin - Producing Carnobacterium maltaromaticum on survival of Escherichia coli and Salmonella Typhimurium on beef. , 2019, International journal of food microbiology.

[21]  Suisha Liang,et al.  1,520 reference genomes from cultivated human gut bacteria enable functional microbiome analyses , 2019, Nature Biotechnology.

[22]  L. Duan,et al.  Beneficial effect of butyrate‐producing Lachnospiraceae on stress‐induced visceral hypersensitivity in rats , 2018, Journal of gastroenterology and hepatology.

[23]  S. Klein,et al.  The microgenderome revealed: sex differences in bidirectional interactions between the microbiota, hormones, immunity and disease susceptibility , 2018, Seminars in Immunopathology.

[24]  Xiaotian Chen,et al.  Faecalibacterium prausnitzii Produces Butyrate to Maintain Th17/Treg Balance and to Ameliorate Colorectal Colitis by Inhibiting Histone Deacetylase 1. , 2018, Inflammatory bowel diseases.

[25]  T. Borowski,et al.  Bacterial steroid hydroxylases: enzyme classes, their functions and comparison of their catalytic mechanisms , 2018, Applied Microbiology and Biotechnology.

[26]  Chandra Sekhar Pedamallu,et al.  GATK PathSeq: a customizable computational tool for the discovery and identification of microbial sequences in libraries from eukaryotic hosts , 2018, Bioinform..

[27]  Zhenwei Dai,et al.  Multi-cohort analysis of colorectal cancer metagenome identified altered bacteria across populations and universal bacterial markers , 2018, Microbiome.

[28]  Jun Sun The Role of Vitamin D and Vitamin D Receptors in Colon Cancer , 2017, Clinical and Translational Gastroenterology.

[29]  F. Hirche,et al.  Oral intake of 7-dehydrocholesterol increases vitamin D3 concentrations in the liver and kidney , 2016, The Journal of Steroid Biochemistry and Molecular Biology.

[30]  W. Garrett,et al.  Gut Microbiota, Inflammation, and Colorectal Cancer. , 2016, Annual review of microbiology.

[31]  Jun Yu,et al.  Hemolytic E. coli Promotes Colonic Tumorigenesis in Females. , 2016, Cancer research.

[32]  J. Gustafsson,et al.  Estrogen receptor beta as target for colorectal cancer prevention. , 2016, Cancer letters.

[33]  D. P. Lewis,et al.  Support for the Microgenderome: Associations in a Human Clinical Population , 2016, Scientific Reports.

[34]  Gianluca Bontempi,et al.  TCGAbiolinks: an R/Bioconductor package for integrative analysis of TCGA data , 2015, Nucleic acids research.

[35]  D. Shu,et al.  Crosstalk Between Bioactive Peptide and Intestinal Barrier in Gut Homeostasis. , 2015, Current protein & peptide science.

[36]  Jun Yu,et al.  Gut mucosal microbiome across stages of colorectal carcinogenesis , 2015, Nature Communications.

[37]  S. Prakash,et al.  Oral supplementation with probiotic L. reuteri NCIMB 30242 increases mean circulating 25-hydroxyvitamin D: a post hoc analysis of a randomized controlled trial. , 2013, The Journal of clinical endocrinology and metabolism.

[38]  Leah M. Feazel,et al.  Sex Differences in the Gut Microbiome Drive Hormone-Dependent Regulation of Autoimmunity , 2013, Science.

[39]  Steven J. M. Jones,et al.  Comprehensive molecular characterization of human colon and rectal cancer , 2012, Nature.

[40]  M. Meurer,et al.  Conversion of vitamin D3 to hormonally active 1α,25-dihydroxyvitamin D3 in cultured keratinocytes: Relevance to cell growth and differentiation , 2010, The Journal of Steroid Biochemistry and Molecular Biology.

[41]  D. Trump,et al.  Vitamin D signalling pathways in cancer: potential for anticancer therapeutics , 2007, Nature Reviews Cancer.

[42]  C. Boone,et al.  Calcium, vitamin D, and colon cancer. , 1992, Cancer research.

[43]  T. H. van der Kwast,et al.  Determination of 1,25-dihydroxyvitamin D concentrations in human colon tissues and matched serum samples. , 2012, Anticancer research.

[44]  H. Sugimoto,et al.  Crystal structure of CYP105A1 (P450SU-1) in complex with 1alpha,25-dihydroxyvitamin D3. , 2008, Biochemistry.