Drawing Graphs with Nonuniform Nodes Using Potential Fields

A potential field approach, coupled with force-directed methods, is proposed in this paper for drawing graphs with nonuniform nodes in 2-D and 3-D. In our framework, nonuniform nodes are uniformly or nonuniformly charged, while edges are modelled by springs. Using certain techniques developed in the field of potential-based path planning, we are able to find analytically tractable procedures for computing the repulsive force and torque of a node in the potential field induced by the remaining nodes. Our experimental results suggest this new approach to be promising, as drawings of good quality for a variety of graphs in 2-D and 3-D can be produced efficiently.