Finance Without Brownian Motions: An Introduction to Simplified Stochastic Calculus

The paper introduces a simple way of recording and manipulating stochastic processes without explicit reference to a probability measure. In the new calculus, operations traditionally presented in a measure-specific way are instead captured by tracing the behaviour of jumps (also when no jumps are physically present). The new calculus is thus intuitive and compact. The calculus is also fail-safe in that, under minimal assumptions, all formal calculations are guaranteed to yield mathematically well-defined stochastic processes. Several illustrative examples of the new concept are given, among them a novel result on the Margrabe option to exchange one defaultable asset for another.

[1]  D. Applebaum Lévy Processes and Stochastic Calculus: Preface , 2009 .

[2]  Paul A. Samuelson,et al.  Rational Theory of Warrant Pricing , 2015 .

[3]  Steven Kou,et al.  Pricing Asian Options Under a Hyper-Exponential Jump Diffusion Model , 2012, Oper. Res..

[4]  J. Ruf,et al.  Convergence of local supermartingales and Novikov-Kazamaki type conditions for processes with jumps , 2014, 1411.6229.

[5]  William Margrabe The Value of an Option to Exchange One Asset for Another , 1978 .

[6]  Christian Bender,et al.  On q-optimal martingale measures in exponential Lévy models , 2008, Finance Stochastics.

[7]  Kiyosi Itô On a formula concerning stochastic differentials , 1951 .

[8]  R. C. Merton,et al.  Option pricing when underlying stock returns are discontinuous , 1976 .

[9]  佐藤 健一 Lévy processes and infinitely divisible distributions , 2013 .

[11]  Yacine Aït-Sahalia,et al.  Robust Consumption and Portfolio Policies When Asset Prices Can Jump , 2018, J. Econ. Theory.

[12]  P. A. Meyer,et al.  Un Cours sur les Intégrales Stochastiques , 2002 .

[13]  Sara Biagini,et al.  Admissible Strategies in Semimartingale Portfolio Selection , 2009, SIAM J. Control. Optim..

[14]  Vadim Linetsky,et al.  Pricing Options in Jump-Diffusion Models: An Extrapolation Approach , 2008, Oper. Res..

[15]  Jan Kallsen,et al.  Optimal portfolios for exponential Lévy processes , 2000, Math. Methods Oper. Res..

[16]  Subramanian Ramamoorthy,et al.  Applied Stochastic Control of Jump Diffusions , 2011 .

[17]  M. Émery Stabilité des solutions des équations différentielles stochastiques application aux intégrales multiplicatives stochastiques , 1978 .

[18]  Friedrich Hubalek,et al.  Variance-Optimal Hedging for Processes with Stationary Independent Increments , 2006, math/0607112.

[19]  F. Black,et al.  The Pricing of Options and Corporate Liabilities , 1973, Journal of Political Economy.

[20]  Yoshio Miyahara,et al.  The minimal entropy martingale measures for geometric Lévy processes , 2003, Finance Stochastics.

[21]  Jan Vecer,et al.  Pricing Asian options in a semimartingale model , 2004 .

[22]  Monique Jeanblanc,et al.  MINIMAL f q -MARTINGALE MEASURES FOR EXPONENTIAL LÉVY PROCESSES , 2007, 0710.5594.

[23]  S. Sarkka,et al.  Application of Girsanov Theorem to Particle Filtering of Discretely Observed Continuous - Time Non-Linear Systems , 2007, 0705.1598.

[24]  D. Duffie,et al.  Affine Processes and Application in Finance , 2002 .

[25]  M. Grigoriu Stochastic Calculus: Applications in Science and Engineering , 2002 .