DOPPLER SIGNATURES OF THE ATMOSPHERIC CIRCULATION ON HOT JUPITERS

The meteorology of hot Jupiters has been characterized primarily with thermal measurements, but recent observations suggest the possibility of directly detecting the winds by observing the Doppler shift of spectral lines seen during transit. Motivated by these observations, we show how Doppler measurements can place powerful constraints on the meteorology. We show that the atmospheric circulation?and Doppler signature?of hot Jupiters splits into two regimes. Under weak stellar insolation, the day-night thermal forcing generates fast zonal jet streams from the interaction of atmospheric waves with the mean flow. In this regime, air along the terminator (as seen during transit) flows toward Earth in some regions and away from Earth in others, leading to a Doppler signature exhibiting superposed blueshifted and redshifted components. Under intense stellar insolation, however, the strong thermal forcing damps these planetary-scale waves, inhibiting their ability to generate jets. Strong frictional drag likewise damps these waves and inhibits jet formation. As a result, this second regime exhibits a circulation dominated by high-altitude, day-to-night airflow, leading to a predominantly blueshifted Doppler signature during transit. We present state-of-the-art circulation models including non-gray radiative transfer to quantify this regime shift and the resulting Doppler signatures; these models suggest that cool planets like GJ?436b lie in the first regime, HD?189733b is transitional, while planets hotter than HD?209458b lie in the second regime. Moreover, we show how the amplitude of the Doppler shifts constrains the strength of frictional drag in the upper atmospheres of hot Jupiters. If due to winds, the ~2 km s?1 blueshift inferred on HD?209458b may require drag time constants as short as 104-106?s, possibly the result of Lorentz-force braking on this planet's hot dayside.

[1]  A. Burrows,et al.  Theory of Extrasolar Giant Planet Transits , 2001, astro-ph/0101024.

[2]  L. Polvani,et al.  The Morphogenesis of Bands and Zonal Winds in the Atmospheres on the Giant Outer Planets , 1996, Science.

[3]  S. Seager,et al.  HIGH METALLICITY AND NON-EQUILIBRIUM CHEMISTRY IN THE DAYSIDE ATMOSPHERE OF HOT-NEPTUNE GJ 436b , 2010, 1004.5121.

[4]  Drake Deming,et al.  Infrared radiation from an extrasolar planet , 2005, Nature.

[5]  K. Menou,et al.  ATMOSPHERIC CIRCULATION OF HOT JUPITERS: A SHALLOW THREE-DIMENSIONAL MODEL , 2008, 0809.1671.

[6]  David Charbonneau,et al.  MULTIWAVELENGTH CONSTRAINTS ON THE DAY–NIGHT CIRCULATION PATTERNS OF HD 189733b , 2008, 0802.1705.

[7]  R. Perna,et al.  THE EFFECTS OF IRRADIATION ON HOT JOVIAN ATMOSPHERES: HEAT REDISTRIBUTION AND ENERGY DISSIPATION , 2012, 1201.5391.

[8]  G. Vallis Atmospheric and Oceanic Fluid Dynamics: Preface , 2006 .

[9]  K. Menou,et al.  HABITABLE CLIMATES: THE INFLUENCE OF OBLIQUITY , 2008, 0807.4180.

[10]  K. Heng,et al.  Atmospheric circulation of tidally locked exoplanets: II. Dual-band radiative transfer and convective adjustment , 2011, 1105.4065.

[11]  S. Seager,et al.  A NEW 24 μm PHASE CURVE FOR υ ANDROMEDAE b , 2010, 1008.0393.

[12]  Kevin Heng,et al.  Atmospheric circulation of tidally locked exoplanets: a suite of benchmark tests for dynamical solvers , 2010, 1010.1257.

[13]  B. Gaudi,et al.  On Constraining a Transiting Exoplanet’s Rotation Rate with Its Transit Spectrum , 2007, 0705.0004.

[14]  Drake Deming,et al.  Spitzer/MIPS 24 μm OBSERVATIONS OF HD 209458b: THREE ECLIPSES, TWO AND A HALF TRANSITS, AND A PHASE CURVE CORRUPTED BY INSTRUMENTAL SENSITIVITY VARIATIONS , 2012, 1202.1562.

[15]  Adam Burrows,et al.  PHOTOMETRIC AND SPECTRAL SIGNATURES OF THREE-DIMENSIONAL MODELS OF TRANSITING GIANT EXOPLANETS , 2010, 1005.0346.

[16]  Richard S. Freedman,et al.  A Unified Theory for the Atmospheres of the Hot and Very Hot Jupiters: Two Classes of Irradiated Atmospheres , 2007, 0710.2558.

[17]  I. Boisse,et al.  Exoplanet transmission spectroscopy: accounting for the eccentricity and the longitude of periastron - Superwinds in the upper atmosphere of HD 209458b? , 2011, 1102.0464.

[18]  C. Watkins,et al.  GRAVITY WAVES ON HOT EXTRASOLAR PLANETS. I. PROPAGATION AND INTERACTION WITH THE BACKGROUND , 2010, 1003.4818.

[19]  Chris Hill,et al.  Implementation of an Atmosphere-Ocean General Circulation Model on the Expanded Spherical Cube , 2004 .

[20]  Gareth P. Williams Planetary Circulations: 1. Barotropic Representation of Jovian and Terrestrial Turbulence , 1978 .

[21]  T. Brown Transmission Spectra as Diagnostics of Extrasolar Giant Planet Atmospheres , 2001, astro-ph/0101307.

[22]  H. Rauer,et al.  Venus transit 2004: Illustrating the capability of exoplanet transmission spectroscopy , 2011, 1107.3700.

[23]  Kristen Menou,et al.  MAGNETIC DRAG ON HOT JUPITER ATMOSPHERIC WINDS , 2010, 1003.3838.

[24]  K. Menou,et al.  THREE-DIMENSIONAL MODELING OF HOT JUPITER ATMOSPHERIC FLOWS , 2009, 0907.2692.

[25]  M. Marley,et al.  ATMOSPHERIC CIRCULATION OF ECCENTRIC HOT NEPTUNE GJ436b , 2010, 1007.2942.

[26]  L. Polvani,et al.  EQUATORIAL SUPERROTATION ON TIDALLY LOCKED EXOPLANETS , 2011, 1103.3101.

[27]  A time-dependent radiative model of HD 209458b , 2004, astro-ph/0409468.

[28]  C P McKay,et al.  Thermal structure of Uranus' atmosphere. , 1999, Icarus.

[29]  K. Menou,et al.  A GENERAL CIRCULATION MODEL FOR GASEOUS EXOPLANETS WITH DOUBLE-GRAY RADIATIVE TRANSFER , 2011, 1112.1658.

[30]  I. Hubeny,et al.  A Possible Bifurcation in Atmospheres of Strongly Irradiated Stars and Planets , 2003 .

[31]  I. Dobbs-Dixon,et al.  Atmospheric Dynamics of Short-Period Extrasolar Gas Giant Planets. I. Dependence of Nightside Temperature on Opacity , 2007, 0704.3269.

[32]  K. Lodders Alkali Element Chemistry in Cool Dwarf Atmospheres , 1999 .

[33]  Princeton,et al.  Theoretical Transmission Spectra during Extrasolar Giant Planet Transits , 1999, astro-ph/9912241.

[34]  D. Lin,et al.  RADIATIVE HYDRODYNAMIC SIMULATIONS OF HD209458b: TEMPORAL VARIABILITY , 2010, 1001.0982.

[35]  G. Vallis,et al.  Generation of Mean Flows and Jets on a Beta Plane and over Topography , 1993 .

[36]  Tristan Guillot,et al.  Atmospheric circulation and tides of ``51 Pegasus b-like'' planets , 2002 .

[37]  K. Menou,et al.  RADIATION HYDRODYNAMICS OF HOT JUPITER ATMOSPHERES , 2009, 0910.1346.

[38]  Curtis S. Cooper,et al.  Dynamics and Disequilibrium Carbon Chemistry in Hot Jupiter Atmospheres, with Application to HD 209458b , 2006 .

[39]  A. D. Etangs,et al.  Rayleigh scattering in the transit spectrum of HD 189733b , 2008, 0802.3228.

[40]  Jun Yu Li,et al.  CIRCULATION AND DISSIPATION ON HOT JUPITERS , 2010, 1005.0589.

[41]  P. Rhines Waves and turbulence on a beta-plane , 1975, Journal of Fluid Mechanics.

[42]  M. McIntyre,et al.  Multiple Jets as PV Staircases: The Phillips Effect and the Resilience of Eddy-Transport Barriers , 2008 .

[43]  Ashwin R. Vasavada,et al.  Jovian atmospheric dynamics: an update after Galileo and Cassini , 2005 .

[44]  A. P. Showman,et al.  TRANSMISSION SPECTRA OF THREE-DIMENSIONAL HOT JUPITER MODEL ATMOSPHERES , 2009, 0912.2350.

[45]  B. Fegley,et al.  Atmospheric Chemistry in Giant Planets, Brown Dwarfs, and Low-Mass Dwarf Stars: I. Carbon, Nitrogen, and Oxygen , 2002 .

[46]  James J. Hack,et al.  Description of a Global Shallow Water Model Based on the Spectral Transform Method , 1992 .

[47]  M. Marley,et al.  Atmospheric Circulation of Hot Jupiters: Three-dimensional Circulation Models of HD 209458b and HD 189733b with Simplified Forcing , 2008, 0802.0327.

[48]  D. Charbonneau,et al.  Hot nights on extrasolar planets: mid‐infrared phase variations of hot Jupiters , 2007, 0705.1189.

[49]  Emily Rauscher,et al.  CONSTRAINING HIGH-SPEED WINDS IN EXOPLANET ATMOSPHERES THROUGH OBSERVATIONS OF ANOMALOUS DOPPLER SHIFTS DURING TRANSIT , 2011, 1109.2270.

[50]  Curtis S. Cooper,et al.  Dynamic Meteorology at the Photosphere of HD 209458b , 2005, astro-ph/0502476.

[51]  David Charbonneau,et al.  The 3.6-8.0 μm Broadband Emission Spectrum of HD 209458b: Evidence for an Atmospheric Temperature Inversion , 2007, 0709.3984.

[52]  Simon Albrecht,et al.  The orbital motion, absolute mass and high-altitude winds of exoplanet HD 209458b , 2010, Nature.

[53]  David Charbonneau,et al.  A map of the day–night contrast of the extrasolar planet HD 189733b , 2007, Nature.

[54]  K. Menou MAGNETIC SCALING LAWS FOR THE ATMOSPHERES OF HOT GIANT EXOPLANETS , 2011, 1108.3592.

[55]  Drake Deming,et al.  3.6 AND 4.5 μm PHASE CURVES AND EVIDENCE FOR NON-EQUILIBRIUM CHEMISTRY IN THE ATMOSPHERE OF EXTRASOLAR PLANET HD 189733b , 2012, 1206.6887.

[56]  David Charbonneau,et al.  ATMOSPHERIC CIRCULATION OF HOT JUPITERS: COUPLED RADIATIVE-DYNAMICAL GENERAL CIRCULATION MODEL SIMULATIONS OF HD 189733b and HD 209458b , 2008, 0809.2089.

[57]  H. Thrastarson,et al.  EFFECTS OF INITIAL FLOW ON CLOSE-IN PLANET ATMOSPHERIC CIRCULATION , 2010, 1004.2871.

[58]  David Charbonneau,et al.  Detection of Thermal Emission from an Extrasolar Planet , 2005 .

[59]  A. Burrows,et al.  MODELS OF NEPTUNE-MASS EXOPLANETS: EMERGENT FLUXES AND ALBEDOS , 2009, 0909.2043.

[60]  M. Marley,et al.  Line and Mean Opacities for Ultracool Dwarfs and Extrasolar Planets , 2007, 0706.2374.

[61]  A. Burrows,et al.  On the Indirect Detection of Sodium in the Atmosphere of the Planetary Companion to HD 209458 , 2002, astro-ph/0208263.

[62]  Thomas P. Greene,et al.  TRANSMISSION SPECTRA OF TRANSITING PLANET ATMOSPHERES: MODEL VALIDATION AND SIMULATIONS OF THE HOT NEPTUNE GJ 436b FOR THE JAMES WEBB SPACE TELESCOPE , 2010, 1010.2451.

[63]  Gareth P. Williams Planetary Circulations: 2. The Jovian Quasi-Geostrophic Regime , 1979 .