Some geometric results in semidefinite programming

The purpose of this paper is to develop certain geometric results concerning the feasible regions of Semidefinite Programs, called hereSpectrahedra.We first develop a characterization for the faces of spectrahedra. More specifically, given a pointx in a spectrahedron, we derive an expression for the minimal face containingx. Among other things, this is shown to yield characterizations for extreme points and extreme rays of spectrahedra. We then introduce the notion of an algebraic polar of a spectrahedron, and present its relation to the usual geometric polar.

[1]  A. Charnes,et al.  Duality and asymptotic solvability over cones , 1969 .

[2]  G. P. Barker,et al.  Cones of diagonally dominant matrices , 1975 .

[3]  P. Wolfe,et al.  The minimization of certain nondifferentiable sums of eigenvalues of symmetric matrices , 1975 .

[4]  丸山 徹 Convex Analysisの二,三の進展について , 1977 .

[5]  H. Wolkowicz,et al.  Some applications of optimization in matrix theory , 1981 .

[6]  J. Borwein Characterization of optimality for the abstract convex program with finite dimensional range , 1981, Journal of the Australian Mathematical Society.

[7]  L. Lovász,et al.  Geometric Algorithms and Combinatorial Optimization , 1981 .

[8]  L. Lovász,et al.  Polynomial Algorithms for Perfect Graphs , 1984 .

[9]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[10]  R. Fletcher Semi-Definite Matrix Constraints in Optimization , 1985 .

[11]  J. G. Pierce,et al.  Geometric Algorithms and Combinatorial Optimization , 2016 .

[12]  P. Binding Simultaneous diagonalisation of several Hermitian matrices , 1990 .

[13]  R. Grone,et al.  Extremal correlation matrices , 1990 .

[14]  Chi-Kwong Li,et al.  Joint Ranges of Hermitian Matrices and Simultaneous Diagonalization , 1991 .

[15]  Alexander Schrijver,et al.  Cones of Matrices and Set-Functions and 0-1 Optimization , 1991, SIAM J. Optim..

[16]  Panos M. Pardalos,et al.  Open questions in complexity theory for numerical optimization , 1992, Mathematical programming.

[17]  Michael L. Overton,et al.  Large-Scale Optimization of Eigenvalues , 1990, SIAM J. Optim..

[18]  Michael L. Overton,et al.  Optimality conditions and duality theory for minimizing sums of the largest eigenvalues of symmetric matrices , 2015, Math. Program..

[19]  Charles Delorme,et al.  Combinatorial Properties and the Complexity of a Max-cut Approximation , 1993, Eur. J. Comb..

[20]  M. Ramana An algorithmic analysis of multiquadratic and semidefinite programming problems , 1994 .

[21]  G. Pataki On the Facial Structure of Cone-LP's and Semi-Definite Programs , 1994 .

[22]  S. Poljak,et al.  On a positive semidefinite relaxation of the cut polytope , 1995 .

[23]  David P. Williamson,et al.  Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming , 1995, JACM.

[24]  Farid Alizadeh,et al.  Interior Point Methods in Semidefinite Programming with Applications to Combinatorial Optimization , 1995, SIAM J. Optim..

[25]  Motakuri V. Ramana,et al.  An exact duality theory for semidefinite programming and its complexity implications , 1997, Math. Program..

[26]  M. Kojima,et al.  Linear Algebra for Semidefinite Programming , 1997 .

[27]  Satissed Now Consider Improved Approximation Algorithms for Maximum Cut and Satissability Problems Using Semideenite Programming , 1997 .