Some geometric results in semidefinite programming
暂无分享,去创建一个
[1] A. Charnes,et al. Duality and asymptotic solvability over cones , 1969 .
[2] G. P. Barker,et al. Cones of diagonally dominant matrices , 1975 .
[3] P. Wolfe,et al. The minimization of certain nondifferentiable sums of eigenvalues of symmetric matrices , 1975 .
[4] 丸山 徹. Convex Analysisの二,三の進展について , 1977 .
[5] H. Wolkowicz,et al. Some applications of optimization in matrix theory , 1981 .
[6] J. Borwein. Characterization of optimality for the abstract convex program with finite dimensional range , 1981, Journal of the Australian Mathematical Society.
[7] L. Lovász,et al. Geometric Algorithms and Combinatorial Optimization , 1981 .
[8] L. Lovász,et al. Polynomial Algorithms for Perfect Graphs , 1984 .
[9] Charles R. Johnson,et al. Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.
[10] R. Fletcher. Semi-Definite Matrix Constraints in Optimization , 1985 .
[11] J. G. Pierce,et al. Geometric Algorithms and Combinatorial Optimization , 2016 .
[12] P. Binding. Simultaneous diagonalisation of several Hermitian matrices , 1990 .
[13] R. Grone,et al. Extremal correlation matrices , 1990 .
[14] Chi-Kwong Li,et al. Joint Ranges of Hermitian Matrices and Simultaneous Diagonalization , 1991 .
[15] Alexander Schrijver,et al. Cones of Matrices and Set-Functions and 0-1 Optimization , 1991, SIAM J. Optim..
[16] Panos M. Pardalos,et al. Open questions in complexity theory for numerical optimization , 1992, Mathematical programming.
[17] Michael L. Overton,et al. Large-Scale Optimization of Eigenvalues , 1990, SIAM J. Optim..
[18] Michael L. Overton,et al. Optimality conditions and duality theory for minimizing sums of the largest eigenvalues of symmetric matrices , 2015, Math. Program..
[19] Charles Delorme,et al. Combinatorial Properties and the Complexity of a Max-cut Approximation , 1993, Eur. J. Comb..
[20] M. Ramana. An algorithmic analysis of multiquadratic and semidefinite programming problems , 1994 .
[21] G. Pataki. On the Facial Structure of Cone-LP's and Semi-Definite Programs , 1994 .
[22] S. Poljak,et al. On a positive semidefinite relaxation of the cut polytope , 1995 .
[23] David P. Williamson,et al. Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming , 1995, JACM.
[24] Farid Alizadeh,et al. Interior Point Methods in Semidefinite Programming with Applications to Combinatorial Optimization , 1995, SIAM J. Optim..
[25] Motakuri V. Ramana,et al. An exact duality theory for semidefinite programming and its complexity implications , 1997, Math. Program..
[26] M. Kojima,et al. Linear Algebra for Semidefinite Programming , 1997 .
[27] Satissed Now Consider. Improved Approximation Algorithms for Maximum Cut and Satissability Problems Using Semideenite Programming , 1997 .