Two-Cell to N-Cell Heterogeneous, Inhibitory Networks: Precise Linking of Multistable and Coherent Properties

Inhibitory networks are now recognized as being the controllers of several brain rhythms. However, experimental work with inhibitory cells is technically difficult not only because of their smaller percentage of the neuronal population, but also because of their diverse properties. As such, inhibitory network models with tight links to the experimental data are needed to understand their contributions to population rhythms. However, mathematical analyses of network models with more than two cells is challenging when the cellular models involve biophysical details. We use bifurcation analyses and simulations to show that two-cell analyses can quantitatively predict N-cell (N = 20, 50, 100) network dynamics for heterogeneous, inhibitory networks. Interestingly, multistable states in the two-cell system are manifest as different and distinct coherent network patterns in the N-cell networks for the same parameter sets.

[1]  David Hansel,et al.  Chapter 21 Mechanisms of synchrony of neural activity in large networks , 2001 .

[2]  Tamás F Freund,et al.  Interneuron Diversity series: Rhythm and mood in perisomatic inhibition , 2003, Trends in Neurosciences.

[3]  Carson C. Chow,et al.  Synchronization and Oscillatory Dynamics in Heterogeneous, Mutually Inhibited Neurons , 1998, Journal of Computational Neuroscience.

[4]  Jesse Gillis,et al.  Size does matter: generation of intrinsic network rhythms in thick mouse hippocampal slices. , 2005, Journal of neurophysiology.

[5]  John Rinzel,et al.  Dynamics of Spiking Neurons Connected by Both Inhibitory and Electrical Coupling , 2003, Journal of Computational Neuroscience.

[6]  P. Somogyi,et al.  Brain-state- and cell-type-specific firing of hippocampal interneurons in vivo , 2003, Nature.

[7]  Jiang Brandon Liu,et al.  NNET: linking small- and large-scale network models , 2003, Neurocomputing.

[8]  M. Frotscher,et al.  Fast synaptic inhibition promotes synchronized gamma oscillations in hippocampal interneuron networks , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[9]  P H Tiesinga,et al.  Robust gamma oscillations in networks of inhibitory hippocampal interneurons , 1999, Network.

[10]  M. Frotscher,et al.  Rapid Signaling at Inhibitory Synapses in a Dentate Gyrus Interneuron Network , 2001, The Journal of Neuroscience.

[11]  Bard Ermentrout,et al.  Simulating, analyzing, and animating dynamical systems - a guide to XPPAUT for researchers and students , 2002, Software, environments, tools.

[12]  E. J. Doedel,et al.  AUTO: a program for the automatic bifurcation analysis of autonomous systems , 1980 .

[13]  G. Buzsáki,et al.  Gamma Oscillation by Synaptic Inhibition in a Hippocampal Interneuronal Network Model , 1996, The Journal of Neuroscience.

[14]  Chris J. McBain,et al.  Interneurons unbound , 2001, Nature Reviews Neuroscience.

[15]  F K Skinner,et al.  Using heterogeneity to predict inhibitory network model characteristics. , 2005, Journal of neurophysiology.