A new Wilson line-based action for gluodynamics
暂无分享,去创建一个
[1] A. Staśto,et al. Exploring straight infinite Wilson lines in the self-dual and the MHV Lagrangians , 2020, 2006.16188.
[2] A. Staśto,et al. Wilson lines in the MHV action , 2017, Journal of High Energy Physics.
[3] A. Staśto,et al. Recursion relations for multi-gluon off-shell amplitudes on the light-front and Wilson lines , 2015, 1503.02066.
[4] F. V. D. Veken,et al. Wilson Lines in Quantum Field Theory , 2014 .
[5] Michael Kiermaier,et al. Integrands for QCD rational terms and N = 4 SYM from massive CSW rules , 2012 .
[6] Michael Kiermaier,et al. Integrands for QCD rational terms and $ \mathcal{N} = {4} $ SYM from massive CSW rules , 2011, 1111.0635.
[7] J. Collins. Foundations of Perturbative QCD , 2011 .
[8] D. O’Connell,et al. The kinematic algebra from the self-dual sector , 2011, 1105.2565.
[9] L. Dixon,et al. All tree-level amplitudes in massless QCD , 2010, 1010.3991.
[10] S. Weinzierl,et al. The MHV Lagrangian for a spontaneously broken gauge theory , 2010, 1007.2742.
[11] Chih-Hao Fu. Generating MHV super-vertices in light-cone gauge , 2009, 0911.4603.
[12] L. Motyka,et al. Exact kinematics in the small x evolution of the color dipole and gluon cascade , 2009, 0901.4949.
[13] T. Morris,et al. The canonical transformation and massive CSW vertices for MHV-SQCD , 2008, 0810.3684.
[14] R. Boels,et al. Deriving CSW rules for massive scalar legs and pure Yang-Mills loops , 2008, 0805.1197.
[15] T. Morris,et al. The MHV QCD Lagrangian , 2008, 0805.0239.
[16] Daniel Maître,et al. S@M, a mathematica implementation of the spinor-helicity formalism , 2007, Comput. Phys. Commun..
[17] A. Brandhuber,et al. One-loop MHV rules and pure Yang-Mills , 2007, 0704.0245.
[18] Astronomy,et al. S-Matrix equivalence theorem evasion and dimensional regularisation with the canonical MHV lagrangian , 2007, hep-th/0703286.
[19] A. Brandhuber,et al. Amplitudes in pure Yang-Mills and MHV Diagrams , 2006, hep-th/0612007.
[20] Yu-tin Huang,et al. MHV Lagrangian for N = 4 super Yang-Mills , 2006, hep-th/0611164.
[21] T. Morris,et al. Structure of the MHV-rules lagrangian , 2006, hep-th/0605121.
[22] P. Mansfield. The Lagrangian origin of MHV rules. , 2005, hep-th/0511264.
[23] A. Gorsky,et al. From Yang-Mills lagrangian to MHV diagrams , 2005, hep-th/0510111.
[24] Kasper Risager. A direct proof of the CSW rules , 2005, hep-th/0508206.
[25] E. Witten,et al. Direct proof of the tree-level scattering amplitude recursion relation in Yang-mills theory. , 2005, Physical review letters.
[26] F. Cachazo,et al. New recursion relations for tree amplitudes of gluons , 2004, hep-th/0412308.
[27] A. Brandhuber,et al. Non-supersymmetric loop amplitudes and MHV vertices , 2004, hep-th/0412108.
[28] A. Brandhuber,et al. A Twistor approach to one-loop amplitudes in N=1 supersymmetric Yang-Mills theory , 2004, hep-th/0410280.
[29] A. Brandhuber,et al. One-loop gauge theory amplitudes in N=4 super Yang-Mills from MHV vertices , 2004, hep-th/0407214.
[30] E. Witten,et al. MHV vertices and tree amplitudes in gauge theory , 2004, hep-th/0403047.
[31] E. Iancu,et al. The Color Glass Condensate , 2010, 1002.0333.
[32] K. Selivanov,et al. On amplitudes in the self-dual sector of Yang-Mills theory☆ , 1996, hep-th/9611101.
[33] Chalmers,et al. Self-dual sector of QCD amplitudes. , 1996, Physical review. D, Particles and fields.
[34] D. Cangemi. Self-dual Yang-Mills Theory and One-Loop Like-Helicity QCD Multi-gluon Amplitudes , 1996 .
[35] D. Cangemi. Self-dual Yang-Mills theory and one-loop maximally helicity violating multi-gluon amplitudes , 1996, hep-th/9605208.
[36] W. Bardeen. Self-Dual Yang-Mills Theory, Integrability and Multiparton Amplitudes , 1996 .
[37] L.N.Lipatov. Gauge invariant effective action for high-energy processes in QCD , 1995, hep-ph/9502308.
[38] D. Kosower. Light-cone recurrence relations for QCD amplitudes , 1990 .
[39] A. Polyakov. Gauge fields as rings of glue , 1980 .
[40] J. Schwarz,et al. Gravitation in the light cone gauge , 1975 .