Both sunitinib and sorafenib are effective treatments for pheochromocytoma in a xenograft model.

[1]  K. Pacak,et al.  Pheochromocytoma and paraganglioma. , 2015, Endocrine practice : official journal of the American College of Endocrinology and the American Association of Clinical Endocrinologists.

[2]  J. Schellens,et al.  Plasma Concentrations of Tyrosine Kinase Inhibitors Imatinib, Erlotinib, and Sunitinib in Routine Clinical Outpatient Cancer Care , 2014, Therapeutic drug monitoring.

[3]  B. Chauffert,et al.  New biological perspectives for the improvement of the efficacy of sorafenib in hepatocellular carcinoma. , 2014, Cancer letters.

[4]  P. Rustin,et al.  Germline mutations in FH confer predisposition to malignant pheochromocytomas and paragangliomas. , 2014, Human molecular genetics.

[5]  M. Korbonits,et al.  Combination of 13-Cis retinoic acid and lovastatin: marked antitumor potential in vivo in a pheochromocytoma allograft model in female athymic nude mice. , 2014, Endocrinology.

[6]  E. Baudin,et al.  Current and Future Treatments for Malignant Pheochromocytoma and Sympathetic Paraganglioma , 2013, Current Oncology Reports.

[7]  C. Carlo-Stella,et al.  Sorafenib Inhibits Lymphoma Xenografts by Targeting MAPK/ERK and AKT Pathways in Tumor and Vascular Cells , 2013, PloS one.

[8]  Mohid S. Khan,et al.  Molecular Pathogenesis of Neuroendocrine Tumors: Implications for Current and Future Therapeutic Approaches , 2013, Clinical Cancer Research.

[9]  A. Vinik,et al.  Sunitinib for the Treatment of Metastatic Paraganglioma and Vasoactive Intestinal Polypeptide-Producing Tumor (VIPoma) , 2013, Pancreas.

[10]  T. Prochilo,et al.  Targeting VEGF-VEGFR Pathway by Sunitinib in Peripheral Primitive Neuroectodermal Tumor, Paraganglioma and Epithelioid Hemangioendothelioma: Three Case Reports , 2013, Case Reports in Oncology.

[11]  Zhao-You Tang,et al.  Sorafenib down-regulates expression of HTATIP2 to promote invasiveness and metastasis of orthotopic hepatocellular carcinoma tumors in mice. , 2012, Gastroenterology.

[12]  A. Veerman,et al.  Myeloid Antigen Expression in Childhood Acute Lymphoblastic Leukemia and Its Relevance for Clinical Outcome in Indonesian ALL-2006 Protocol , 2012, Journal of oncology.

[13]  T. Sugino,et al.  A combination of liposomal sunitinib plus liposomal irinotecan and liposome co-loaded with two drugs enhanced antitumor activity in PC12-bearing mouse , 2012, Journal of drug targeting.

[14]  M. Korbonits,et al.  Combined blockade of signalling pathways shows marked anti-tumour potential in phaeochromocytoma cell lines. , 2012, Journal of molecular endocrinology.

[15]  E. Baudin,et al.  Treatment with sunitinib for patients with progressive metastatic pheochromocytomas and sympathetic paragangliomas. , 2012, The Journal of clinical endocrinology and metabolism.

[16]  M. Mannelli,et al.  Updated and New Perspectives on Diagnosis, Prognosis, and Therapy of Malignant Pheochromocytoma/Paraganglioma , 2012, Journal of oncology.

[17]  B. Evers,et al.  The role of PI3K/mTOR inhibition in combination with sorafenib in hepatocellular carcinoma treatment. , 2012, Anticancer research.

[18]  Johannes E. Schindelin,et al.  Fiji: an open-source platform for biological-image analysis , 2012, Nature Methods.

[19]  S. Anai,et al.  5-fluorouracil enhances the antitumor effect of sorafenib and sunitinib in a xenograft model of human renal cell carcinoma. , 2012, Oncology letters.

[20]  J. Dai,et al.  Multi-targeted tyrosine kinase inhibitor sunitinib: a novel strategy for sporadic malignant pheochromocytoma. , 2012, Chinese medical journal.

[21]  H. Shimano,et al.  Sunitinib induces apoptosis in pheochromocytoma tumor cells by inhibiting VEGFR2/Akt/mTOR/S6K1 pathways through modulation of Bcl-2 and BAD. , 2012, American journal of physiology. Endocrinology and metabolism.

[22]  A. Grossman,et al.  Signaling Pathways in Pheochromocytomas and Paragangliomas: Prospects for Future Therapies , 2012, Endocrine Pathology.

[23]  K. Nathanson,et al.  Pheochromocytoma and paraganglioma: understanding the complexities of the genetic background. , 2012, Cancer genetics.

[24]  P. Igaz,et al.  Rationale for Anti-angiogenic Therapy in Pheochromocytoma and Paraganglioma , 2012, Endocrine Pathology.

[25]  L. Kvols,et al.  Evolving Diagnostic and Treatment Strategies for Pancreatic Neuroendocrine Tumors , 2011, Journal of hematology & oncology.

[26]  Lei Feng,et al.  Clinical risk factors for malignancy and overall survival in patients with pheochromocytomas and sympathetic paragangliomas: primary tumor size and primary tumor location as prognostic indicators. , 2011, The Journal of clinical endocrinology and metabolism.

[27]  A. Gimenez-Roqueplo,et al.  Pheochromocytomas: the (pseudo)-hypoxia hypothesis. , 2010, Best practice & research. Clinical endocrinology & metabolism.

[28]  B. Teh,et al.  Sunitinib acts primarily on tumor endothelium rather than tumor cells to inhibit the growth of renal cell carcinoma. , 2010, Cancer research.

[29]  H. Verheul,et al.  Anti-angiogenic tyrosine kinase inhibitors: what is their mechanism of action? , 2009, Angiogenesis.

[30]  R. Kerbel,et al.  Tumor and Host-Mediated Pathways of Resistance and Disease Progression in Response to Antiangiogenic Therapy , 2009, Clinical Cancer Research.

[31]  Tae Won Kim,et al.  Sunitinib, a novel therapy for anthracycline- and cisplatin-refractory malignant pheochromocytoma. , 2009, Japanese journal of clinical oncology.

[32]  Masahiro Inoue,et al.  Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis. , 2009, Cancer cell.

[33]  E. Jonasch,et al.  Use of the tyrosine kinase inhibitor sunitinib in a patient with von Hippel-Lindau disease: targeting angiogenic factors in pheochromocytoma and other von Hippel-Lindau disease-related tumors. , 2009, The Journal of clinical endocrinology and metabolism.

[34]  A. Tischler,et al.  Characterization of an animal model of aggressive metastatic pheochromocytoma linked to a specific gene signature , 2009, Clinical & Experimental Metastasis.

[35]  O. Cummings,et al.  Patient with malignant paraganglioma responding to the multikinase inhibitor sunitinib malate. , 2009, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[36]  A. Evans,et al.  Rationale and evidence for sunitinib in the treatment of malignant paraganglioma/pheochromocytoma. , 2009, The Journal of clinical endocrinology and metabolism.

[37]  S. Wilhelm,et al.  Sorafenib (BAY 43-9006) inhibits tumor growth and vascularization and induces tumor apoptosis and hypoxia in RCC xenograft models , 2007, Cancer Chemotherapy and Pharmacology.

[38]  D. McDonald,et al.  Rapid vascular regrowth in tumors after reversal of VEGF inhibition. , 2006, The Journal of clinical investigation.

[39]  S. Richard,et al.  Genetic testing in pheochromocytoma or functional paraganglioma. , 2005, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[40]  Dirk Strumberg,et al.  Phase I clinical and pharmacokinetic study of the Novel Raf kinase and vascular endothelial growth factor receptor inhibitor BAY 43-9006 in patients with advanced refractory solid tumors. , 2005, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[41]  H. Bonjer,et al.  The significance of angiogenesis in malignant pheochromocytomas , 2004, Endocrine pathology.

[42]  M. Rothmund,et al.  A unique allogenic model of metastatic pheochromocytoma: PC12 rat pheochromocytoma xenografts to nude mice and establishment of metastases-derived PC12 variants , 1998, Clinical & Experimental Metastasis.

[43]  C. Haglund,et al.  VEGF in 105 pheochromocytomas: enhanced expression correlates with malignant outcome , 2003, APMIS : acta pathologica, microbiologica, et immunologica Scandinavica.

[44]  Juthamas Sukbuntherng,et al.  In vivo antitumor activity of SU11248, a novel tyrosine kinase inhibitor targeting vascular endothelial growth factor and platelet-derived growth factor receptors: determination of a pharmacokinetic/pharmacodynamic relationship. , 2003, Clinical cancer research : an official journal of the American Association for Cancer Research.

[45]  L. Hofbauer,et al.  VEGF-mediated angiogenesis of human pheochromocytomas is associated to malignancy and inhibited by anti-VEGF antibodies in experimental tumors. , 2002, Surgery.

[46]  P. Corvol,et al.  Angiogenesis and vascular architecture in pheochromocytomas: distinctive traits in malignant tumors. , 2002, The American journal of pathology.

[47]  G. D. Vita,et al.  Tyrosine 1062 of RET-MEN2A mediates activation of Akt (protein kinase B) and mitogen-activated protein kinase pathways leading to PC12 cell survival. , 2000, Cancer research.

[48]  T. Saclarides,et al.  Tumor angiogenesis in pheochromocytomas and paragangliomas. , 1996, Surgery.

[49]  E. Van Obberghen,et al.  Regulation of the MAP kinase cascade in PC12 cells: B‐Raf activates MEK‐1 (MAP kinase or ERK kinase) and is inhibited by cAMP , 1995, FEBS letters.