Optical design and imaging performance testing of a 9.6-mm diameter femtosecond laser microsurgery probe.

We present the optical design of a 9.6-mm diameter fibercoupled probe for combined femtosecond laser microsurgery and nonlinear optical imaging. Towards enabling clinical use, we successfully reduced the dimensions of our earlier 18-mm microsurgery probe by half, while improving optical performance. We use analytical and computational models to optimize the miniaturized lens system for off-axis scanning aberrations. The optimization reveals that the optical system can be aberration-corrected using simple aspheric relay lenses to achieve diffraction-limited imaging resolution over a large field of view. Before moving forward with custom lenses, we have constructed the 9.6-mm probe using off-the-shelf spherical relay lenses and a 0.55 NA aspheric objective lens. In addition to reducing the diameter by nearly 50% and the total volume by 5 times, we also demonstrate improved lateral and axial resolutions of 1.27 μm and 13.5 μm, respectively, compared to 1.64 μm and 16.4 μm in our previous work. Using this probe, we can successfully image various tissue samples, such as rat tail tendon that required 2-3 × lower laser power than the current state-of-the-art. With further development, imageguided, femtosecond laser microsurgical probes such as this one can enable physicians to achieve the highest level of surgical precision anywhere inside the body. ©2011 Optical Society of America OCIS codes: (170.2150) Endoscopic imaging; (220.4830) Systems design; (180.4315) Nonlinear microscopy. References and links 1. A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005). 2. H. K. Soong, and J. B. Malta, “Femtosecond lasers in ophthalmology,” Am. J. Ophthalmol. 147(2), 189–197, e2 (2009). 3. A. V. Rode, E. G. Gamaly, B. Luther-Davies, B. T. Taylor, J. Dawes, A. Chan, R. M. Lowe, and P. Hannaford, “Subpicosecond laser ablation of dental enamel,” J. Appl. Phys. 92(4), 2153–2158 (2002). 4. M. H. Niemz, A. Kasenbacher, M. Strassl, A. Bäcker, A. Beyertt, D. Nickel, and A. Giesen, “Tooth ablation using a CPA-free thin disk femtosecond laser system,” Appl. Phys. B 79, 269–271 (2004). 5. W. B. Armstrong, J. A. Neev, L. B. Da Silva, A. M. Rubenchik, and B. C. Stuart, “Ultrashort pulse laser ossicular ablation and stapedotomy in cadaveric bone,” Lasers Surg. Med. 30(3), 216–220 (2002). 6. J. Ilgner, M. Wehner, J. Lorenzen, M. Bovi, and M. Westhofen, “Morphological effects of nanosecondand femtosecond-pulsed laser ablation on human middle ear ossicles,” J. Biomed. Opt. 11(1), 014004 (2006). 7. R. G. McCaughey, H. Sun, V. S. Rothholtz, T. Juhasz, and B. J. F. Wong, “Femtosecond laser ablation of the stapes,” J. Biomed. Opt. 14(2), 024040–024046 (2009). 8. H. Wisweh, U. Merkel, A. K. Huller, K. Lurben, and H. Lubatschowski, “Optical coherence tomography monitoring of vocal fold femtosecond laser microsurgery ” in Therapeutic Laser Applications and Laser-Tissue Interaction III, A. Vogel, ed. (2007), p. 63207. 9. C. L. Hoy, W. N. Everett, J. Kobler, and A. Ben-Yakar, “Toward endoscopic ultrafast laser microsurgery of vocal folds,” Proc. SPIE 7548, 754831 (2010). #141745 $15.00 USD Received 26 Jan 2011; revised 23 Feb 2011; accepted 18 Mar 2011; published 13 May 2011 (C) 2011 OSA 23 May 2011 / Vol. 19, No. 11 / OPTICS EXPRESS 10536 10. C. L. Hoy, N. J. Durr, P. Chen, W. Piyawattanametha, H. Ra, O. Solgaard, and A. Ben-Yakar, “Miniaturized probe for femtosecond laser microsurgery and two-photon imaging,” Opt. Express 16(13), 9996–10005 (2008). 11. N. J. Durr, T. Larson, D. K. Smith, B. A. Korgel, K. Sokolov, and A. Ben-Yakar, “Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods,” Nano Lett. 7(4), 941–945 (2007). 12. H. Ürey, “Spot size, depth-of-focus, and diffraction ring intensity formulas for truncated Gaussian beams,” Appl. Opt. 43(3), 620–625 (2004). 13. R. Le Harzic, M. Weinigel, I. Riemann, K. König, and B. Messerschmidt, “Nonlinear optical endoscope based on a compact two axes piezo scanner and a miniature objective lens,” Opt. Express 16(25), 20588–20596 (2008). 14. K. Carlsson, “The influence of specimen refractive index, detector signal integration, and non-uniform scan speed on the imaging properties in confocal microscopy,” J. Microsc. 163, 167–178 (1991). 15. T. D. Visser, J. L. Oud, and G. J. Brakenhoff, “Refractive index and axial distance measurements in 3-D microscopy,” Optik (Stuttg.) 90, 17–19 (1992). 16. D. Lee, and O. Solgaard, “Two-axis gimbaled microscanner in double SOI layers actuated by self-aligned vertical electrostatic combdrive,” in Proceedings of the Solid-State Sensors, Actuators and Microsystems Workshop, Hilton Head Island, (Hilton Head Island, South Carolina, 2004), pp. 352–355. 17. G. F. Marshall, Handbook of optical and laser scanning (Marcel Dekker, 2004). 18. R. R. Shannon, The Art and Science of Optical Design (Cambridge University Press, 1997). 19. E. Salomatina, B. Jiang, J. Novak, and A. N. Yaroslavsky, “Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range,” J. Biomed. Opt. 11(6), 064026 (2006). 20. R. Drezek, K. Sokolov, U. Utzinger, I. Boiko, A. Malpica, M. Follen, and R. Richards-Kortum, “Understanding the contributions of NADH and collagen to cervical tissue fluorescence spectra: modeling, measurements, and implications,” J. Biomed. Opt. 6(4), 385–396 (2001). 21. C. L. Hoy, N. J. Durr, and A. Ben-Yakar, “Fast-updating and non-repeating Lissajous image reconstruction method for capturing increased dynamic information,” Appl. Opt. in press. 22. W. Göbel, J. N. D. Kerr, A. Nimmerjahn, and F. Helmchen, “Miniaturized two-photon microscope based on a flexible coherent fiber bundle and a gradient-index lens objective,” Opt. Lett. 29(21), 2521–2523 (2004). 23. W. Piyawattanametha, E. D. Cocker, R. P. J. Barretto, J. C. Jung, B. A. Flusberg, H. Ra, O. Solgaard, and M. J. Schnitzer, “A portable two-photon fluorescence microendoscope based on a two-dimensional scanning mirror,” in IEEE/LEOS International Conference on Optical MEMS and Nanophotonics, (Hualien, Taiwan, 2007). 24. G. Liu, T. Xie, I. V. Tomov, J. Su, L. Yu, J. Zhang, B. J. Tromberg, and Z. Chen, “Rotational multiphoton endoscopy with a 1 microm fiber laser system,” Opt. Lett. 34(15), 2249–2251 (2009). 25. Y. Wu, Y. Leng, J. Xi, and X. Li, “Scanning all-fiber-optic endomicroscopy system for 3D nonlinear optical imaging of biological tissues,” Opt. Express 17(10), 7907–7915 (2009). 26. G. Liu, K. Kieu, F. W. Wise, and Z. Chen, “Multiphoton microscopy system with a compact fiber-based femtosecond-pulse laser and handheld probe,” J Biophotonics 4(1-2), 34–39 (2011). 27. C. L. Hoy, N. Durr, P. Chen, D. K. Smith, T. Larson, W. Piyawattanametha, H. Ra, B. Korgel, K. Sokolov, O. Solgaard, and A. Ben-Yakar, “Two-Photon Luminescence Imaging Using a MEMS-Based Miniaturized Probe,” in Conference on Lasers and Electro-Optics (CLEO), (Optical Society of America, 2008), paper CThG5. 28. L. Fu, A. Jain, C. Cranfield, H. Xie, and M. Gu, “Three-dimensional nonlinear optical endoscopy,” J. Biomed. Opt. 12(4), 040501 (2007).

[1]  Kjell Carlsson,et al.  The influence of specimen refractive index, detector signal integration, and non‐uniform scan speed on the imaging properties in confocal microscopy , 1991 .

[2]  G. J. Brakenhoff,et al.  Refractive index and axial distance measurements in 3-D microscopy , 1992 .

[3]  R Richards-Kortum,et al.  Understanding the contributions of NADH and collagen to cervical tissue fluorescence spectra: modeling, measurements, and implications. , 2001, Journal of biomedical optics.

[4]  Judith M. Dawes,et al.  Subpicosecond laser ablation of dental enamel , 2002 .

[5]  A. Rubenchik,et al.  Ultrashort pulse laser ossicular ablation and stapedotomy in cadaveric bone * † , 2002, Lasers in surgery and medicine.

[6]  H. Urey Spot size, depth-of-focus, and diffraction ring intensity formulas for truncated Gaussian beams. , 2004, Applied optics.

[7]  Klinikum Mannheim,et al.  Tooth ablation using a CPA-free thin disk femtosecond laser system , 2004 .

[8]  F. Helmchen,et al.  Miniaturized two-photon microscope based on a flexible coherent fiber bundle and a gradient-index lens objective. , 2004, Optics letters.

[9]  Peter-Monnik Weg,et al.  Mechanisms of femtosecond laser nanosurgery of cells and tissues , 2005 .

[10]  Martin Westhofen,et al.  Morphological effects of nanosecond- and femtosecond-pulsed laser ablation on human middle ear ossicles. , 2006, Journal of biomedical optics.

[11]  Elena Salomatina,et al.  Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range. , 2006, Journal of biomedical optics.

[12]  L. Fu,et al.  Three-dimensional nonlinear optical endoscopy. , 2007, Journal of biomedical optics.

[13]  Holger Lubatschowski,et al.  Optical coherence tomography monitoring of vocal fold femtosecond laser microsurgery , 2007, European Conference on Biomedical Optics.

[14]  K. Sokolov,et al.  Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods. , 2007, Nano letters.

[15]  A Portable Two-photon Fluorescence Microendoscope Based on a Two-dimensional Scanning Mirror , 2007, 2007 IEEE/LEOS International Conference on Optical MEMS and Nanophotonics.

[16]  W. Piyawattanametha,et al.  Miniaturized probe for femtosecond laser microsurgery and two-photon imaging. , 2008, Optics express.

[17]  W. Piyawattanametha,et al.  Two-photon luminescence imaging using a MEMS-based miniaturized probe , 2008, 2008 Conference on Lasers and Electro-Optics and 2008 Conference on Quantum Electronics and Laser Science.

[18]  H. K. Soong,et al.  Femtosecond lasers in ophthalmology. , 2009, American journal of ophthalmology.

[19]  Tibor Juhasz,et al.  Femtosecond laser ablation of the stapes. , 2009, Journal of biomedical optics.

[20]  Yuxin Leng,et al.  Scanning all-fiber-optic endomicroscopy system for 3D nonlinear optical imaging of biological tissues. , 2009, Optics express.

[21]  Lingfeng Yu,et al.  Rotational multiphoton endoscopy with a 1 microm fiber laser system. , 2009, Optics Letters.

[22]  Christopher L. Hoy,et al.  Toward endoscopic ultrafast laser microsurgery of vocal folds , 2010, BiOS.

[23]  Adela Ben-Yakar,et al.  Fast-updating and nonrepeating Lissajous image reconstruction method for capturing increased dynamic information. , 2011, Applied optics.

[24]  F. Wise,et al.  Multiphoton microscopy system with a compact fiber‐based femtosecond‐pulse laser and handheld probe , 2011, Journal of biophotonics.