Thermodynamics of the S–Sn system: Implication for synthesis of earth abundant photovoltaic absorber materials

Abstract Development of earth-abundant, non-toxic, and environmentally friendly thin-film photovoltaic (PV) absorber materials motivates the present thermodynamic study of the S–Sn system, which is modeled using the CALPHAD (CALculation of PHase Diagram) technique aided by first-principles calculations. The temperature–composition ( T – x ), pressure–composition ( P – x ) and pressure–temperature ( P – T ) phase diagrams obtained from the modeling identify stability regions for different tin sulfides. This provides quantitative information regarding growth windows and annealing conditions for intelligent discovery and design of synthesis routes to produce low-cost, high-efficiency thin film PV absorber materials such as SnS, SnS 2 , Sn 2 S 3 , and Cu 2 ZnSn(S,Se) 4 .

[1]  C. J. Buchenauer,et al.  Raman Scattering in Gray Tin , 1971 .

[2]  V. Piacente,et al.  Sublimation study of the tin sulphides SnS2, Sn2S3 and SnS , 1991 .

[3]  H. Wiedemeier,et al.  Equilibrium sublimation and thermodynamic properties of SnS , 1979 .

[4]  Zi-kui Liu,et al.  Thermodynamic modeling of the aluminum–iron–oxygen system , 2015 .

[5]  Ivan P. Parkin,et al.  Atmospheric Pressure Chemical Vapor Deposition of Tin Sulfides (SnS, Sn2S3, and SnS2) on Glass , 1999 .

[6]  C. Rotschild,et al.  Detailed Balance Limit of Efficiency of Broadband-Pumped Lasers , 2017, Scientific Reports.

[7]  K. P. Vijayakumar,et al.  Optimization of parameters of chemical spray pyrolysis technique to get n and p-type layers of SnS , 2010 .

[8]  B. Marsen,et al.  Cu2ZnSnS4 thin film solar cells by fast coevaporation , 2011 .

[9]  I. Parkin,et al.  Deposition of tin sulfide thin films from novel, volatile (fluoroalkythiolato)tin(IV) precursors , 2001 .

[10]  T. Buonassisi,et al.  SnS thin-films by RF sputtering at room temperature , 2011 .

[11]  W. Biltz,et al.  Über die Zustandsdiagramme von Zinn mit Schwefel, Selen und Tellur , 1909 .

[12]  Tonio Buonassisi,et al.  3.88% Efficient Tin Sulfide Solar Cells using Congruent Thermal Evaporation , 2014, Advanced materials.

[13]  G. Collins,et al.  Organic/inorganic-molecular beam epitaxy: formation of an ordered phthalocyanine/tin(IV) sulfide heterojunction , 1991 .

[14]  K. Frisk,et al.  Thermodynamic modelling of the M6C carbide in cemented carbides and high-speed steel , 2005 .

[15]  Hans Leo Lukas,et al.  Computational Thermodynamics: The Calphad Method , 2007 .

[16]  L. Romankiw,et al.  A High Efficiency Electrodeposited Cu2ZnSnS4 Solar Cell , 2012 .

[17]  Roy G. Gordon,et al.  Atomic Layer Deposition of Tin Monosulfide Thin Films , 2011 .

[18]  Dimitri D. Vaughn,et al.  Synthesis and crystallographic analysis of shape-controlled SnS nanocrystal photocatalysts: evidence for a pseudotetragonal structural modification. , 2013, Journal of the American Chemical Society.

[19]  R. Sharma,et al.  The S−Sn (Sulfur-Tin) system , 1986 .

[20]  B. Sundman,et al.  Thermodynamic modelling of the Cr-Fe-Ni-O system , 2008 .

[21]  L. Höglund,et al.  Thermo-Calc & DICTRA, computational tools for materials science , 2002 .

[22]  Pengfei Yang,et al.  Preparation of SnS2 thin films by close-spaced sublimation at different source temperatures , 2013 .

[23]  A. Bouzidi,et al.  Optical and electrical properties of Sn 2 S 3 thin films grown by spray pyrolysis , 2010 .

[24]  Marika Edoff,et al.  Chemical Insights into the Instability of Cu2ZnSnS4 Films during Annealing , 2011 .

[25]  Hiran B.M. Anaya,et al.  Tin Sulfide Thin Films by Pulse Electrodeposition: Structural, Morphological, and Optical Properties , 2010 .

[26]  Zi-kui Liu,et al.  Computational thermodynamic modeling of the Mg-B system , 2001 .

[27]  Sang Woon Lee,et al.  Overcoming Efficiency Limitations of SnS‐Based Solar Cells , 2014 .

[28]  H. Heijligers,et al.  The P‐T‐X Phase Diagram of the System Ga‐S , 1966 .

[29]  Mowafak Al-Jassim,et al.  Comparative study of the luminescence and intrinsic point defects in the kesterite Cu2ZnSnS4 and chalcopyrite Cu(In,Ga)Se2 thin films used in photovoltaic applications , 2011 .

[30]  W. Warta,et al.  Solar cell efficiency tables (version 36) , 2010 .

[31]  I. Parkin,et al.  Synthesis and thermal decomposition studies of homo- and heteroleptic tin(IV) thiolates and dithiocarbamates: molecular precursors for tin sulfides , 2002 .

[32]  M. Ferenets,et al.  Thin Solid Films , 2010 .

[33]  S. Lau,et al.  Molecular beam epitaxy growth of high quality p-doped SnS van der Waals epitaxy on a graphene buffer layer , 2012 .

[34]  A. Norman From Elemental Sulfur , 2007 .

[35]  Hariklia Deligianni,et al.  A High Effi ciency Electrodeposited Cu 2 ZnSnS 4 Solar Cell , 2011 .

[36]  R. Orr,et al.  High Temperature Heat Contenits of Stannous and Stannic Sulfides , 1958 .

[37]  P. K. Nair,et al.  Structural and chemical transformations in SnS thin films used in chemically deposited photovoltaic cells , 2007 .

[38]  W. Biltz Notizen über Schmelzen und Sublimieren einiger Sulfide , 1908 .

[39]  Qi Li,et al.  Thermodynamics of the Mg–B system: Implications for the deposition of MgB2 thin films , 2001 .

[40]  K. Frisk,et al.  The effect of nitrogen on the coarsening rate of precipitate phases in iron-based alloys with chromium and vanadium: experimental and theoretical investigations , 2013 .

[41]  Shun-Li Shang,et al.  Control of Phase in Tin Sulfide Thin Films Produced via RF-Sputtering of SnS2 Target with Post-deposition Annealing , 2015, Journal of Electronic Materials.

[42]  W. Warta,et al.  Solar cell efficiency tables (Version 45) , 2015 .

[43]  H. Queisser,et al.  Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells , 1961 .

[44]  Aadarsh Mishra Thin films of tin sulphide for use in thin film solar cell devices , 2014 .

[45]  W. Jaegermann,et al.  Van der Waals epitaxy of the layered semiconductors SnSe2 and SnS2: morphology and growth modes , 1997 .

[46]  Malin Selleby,et al.  Thermodynamic Assessment of the Fe-Mn-O System , 2010 .

[47]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[48]  H. J. Vink,et al.  Investigations on SnS , 1961 .

[49]  Supratik Guha,et al.  Thin film solar cell with 8.4% power conversion efficiency using an earth‐abundant Cu2ZnSnS4 absorber , 2013 .

[50]  Wei Wang,et al.  Device Characteristics of CZTSSe Thin‐Film Solar Cells with 12.6% Efficiency , 2014 .

[51]  R. Miles,et al.  Thermally evaporated thin films of SnS for application in solar cell devices , 2009 .

[52]  T. Eisenbarth,et al.  Route Toward High-Efficiency Single-Phase Cu$_{\bf 2}$ ZnSn(S,Se)$_{\bf 4}$ Thin-Film Solar Cells: Model Experiments and Literature Review , 2011, IEEE Journal of Photovoltaics.

[53]  W. Boettinger,et al.  Development of a Diffusion Mobility Database for Co-Based Superalloys , 2002, Journal of Phase Equilibria and Diffusion.

[54]  David Buckingham,et al.  Optical Properties. (Book Reviews: Modern Nonlinear Optics.) , 1994 .

[55]  A. Ortiz,et al.  Fabrication of SnS2/SnS heterojunction thin film diodes by plasma-enhanced chemical vapor deposition , 2005 .

[56]  P. Dale,et al.  The consequences of kesterite equilibria for efficient solar cells. , 2011, Journal of the American Chemical Society.

[57]  H. Noguchi,et al.  Characterization of vacuum-evaporated tin sulfide film for solar cell materials , 1994 .

[58]  Tadashi Ito,et al.  Enhanced Conversion Efficiencies of Cu2ZnSnS4-Based Thin Film Solar Cells by Using Preferential Etching Technique , 2008 .

[59]  Shivram S. Garje,et al.  Tribenzyltin(IV)chloride Thiosemicarbazones: Novel Single Source Precursors for Growth of SnS Thin Films , 2008 .

[60]  I. Parkin,et al.  Deposition of tin sulfide thin films from tin(IV) thiolate precursors , 2001 .

[61]  Y. Hahn,et al.  Temperature-dependent structural and optical properties of SnS films , 2007 .

[62]  N. Podraza,et al.  Optical Properties of Sputtered SnS Thin Films for Photovoltaic Absorbers , 2013, IEEE Journal of Photovoltaics.

[63]  Ursula R. Kattner Construction of a Thermodynamic Database for Ni-Base Superalloys: A Case Study | NIST , 2002 .

[64]  R. Engelken,et al.  Optimization of photoconductivity in vacuum-evaporated tin sulfide thin films , 1999 .

[65]  Zi-kui Liu First-Principles Calculations and CALPHAD Modeling of Thermodynamics , 2009 .

[66]  J. Campos-Alvarez,et al.  Structural, optical, and electrical properties of tin sulfide thin films grown by spray pyrolysis , 2009 .

[67]  K. Frisk,et al.  Development of a thermodynamic database for cemented carbides for design and processing simulations , 2000 .