Thermodynamics of the S–Sn system: Implication for synthesis of earth abundant photovoltaic absorber materials
暂无分享,去创建一个
Shun-Li Shang | Travis J. Anderson | Zi-Kui Liu | Zi-kui Liu | G. Lindwall | T. Anderson | S. Shang | T. Anderson | Greta Lindwall | Neal R. Kelly | N. Kelly | Greta Lindwall
[1] C. J. Buchenauer,et al. Raman Scattering in Gray Tin , 1971 .
[2] V. Piacente,et al. Sublimation study of the tin sulphides SnS2, Sn2S3 and SnS , 1991 .
[3] H. Wiedemeier,et al. Equilibrium sublimation and thermodynamic properties of SnS , 1979 .
[4] Zi-kui Liu,et al. Thermodynamic modeling of the aluminum–iron–oxygen system , 2015 .
[5] Ivan P. Parkin,et al. Atmospheric Pressure Chemical Vapor Deposition of Tin Sulfides (SnS, Sn2S3, and SnS2) on Glass , 1999 .
[6] C. Rotschild,et al. Detailed Balance Limit of Efficiency of Broadband-Pumped Lasers , 2017, Scientific Reports.
[7] K. P. Vijayakumar,et al. Optimization of parameters of chemical spray pyrolysis technique to get n and p-type layers of SnS , 2010 .
[8] B. Marsen,et al. Cu2ZnSnS4 thin film solar cells by fast coevaporation , 2011 .
[9] I. Parkin,et al. Deposition of tin sulfide thin films from novel, volatile (fluoroalkythiolato)tin(IV) precursors , 2001 .
[10] T. Buonassisi,et al. SnS thin-films by RF sputtering at room temperature , 2011 .
[11] W. Biltz,et al. Über die Zustandsdiagramme von Zinn mit Schwefel, Selen und Tellur , 1909 .
[12] Tonio Buonassisi,et al. 3.88% Efficient Tin Sulfide Solar Cells using Congruent Thermal Evaporation , 2014, Advanced materials.
[13] G. Collins,et al. Organic/inorganic-molecular beam epitaxy: formation of an ordered phthalocyanine/tin(IV) sulfide heterojunction , 1991 .
[14] K. Frisk,et al. Thermodynamic modelling of the M6C carbide in cemented carbides and high-speed steel , 2005 .
[15] Hans Leo Lukas,et al. Computational Thermodynamics: The Calphad Method , 2007 .
[16] L. Romankiw,et al. A High Efficiency Electrodeposited Cu2ZnSnS4 Solar Cell , 2012 .
[17] Roy G. Gordon,et al. Atomic Layer Deposition of Tin Monosulfide Thin Films , 2011 .
[18] Dimitri D. Vaughn,et al. Synthesis and crystallographic analysis of shape-controlled SnS nanocrystal photocatalysts: evidence for a pseudotetragonal structural modification. , 2013, Journal of the American Chemical Society.
[19] R. Sharma,et al. The S−Sn (Sulfur-Tin) system , 1986 .
[20] B. Sundman,et al. Thermodynamic modelling of the Cr-Fe-Ni-O system , 2008 .
[21] L. Höglund,et al. Thermo-Calc & DICTRA, computational tools for materials science , 2002 .
[22] Pengfei Yang,et al. Preparation of SnS2 thin films by close-spaced sublimation at different source temperatures , 2013 .
[23] A. Bouzidi,et al. Optical and electrical properties of Sn 2 S 3 thin films grown by spray pyrolysis , 2010 .
[24] Marika Edoff,et al. Chemical Insights into the Instability of Cu2ZnSnS4 Films during Annealing , 2011 .
[25] Hiran B.M. Anaya,et al. Tin Sulfide Thin Films by Pulse Electrodeposition: Structural, Morphological, and Optical Properties , 2010 .
[26] Zi-kui Liu,et al. Computational thermodynamic modeling of the Mg-B system , 2001 .
[27] Sang Woon Lee,et al. Overcoming Efficiency Limitations of SnS‐Based Solar Cells , 2014 .
[28] H. Heijligers,et al. The P‐T‐X Phase Diagram of the System Ga‐S , 1966 .
[29] Mowafak Al-Jassim,et al. Comparative study of the luminescence and intrinsic point defects in the kesterite Cu2ZnSnS4 and chalcopyrite Cu(In,Ga)Se2 thin films used in photovoltaic applications , 2011 .
[30] W. Warta,et al. Solar cell efficiency tables (version 36) , 2010 .
[31] I. Parkin,et al. Synthesis and thermal decomposition studies of homo- and heteroleptic tin(IV) thiolates and dithiocarbamates: molecular precursors for tin sulfides , 2002 .
[32] M. Ferenets,et al. Thin Solid Films , 2010 .
[33] S. Lau,et al. Molecular beam epitaxy growth of high quality p-doped SnS van der Waals epitaxy on a graphene buffer layer , 2012 .
[34] A. Norman. From Elemental Sulfur , 2007 .
[35] Hariklia Deligianni,et al. A High Effi ciency Electrodeposited Cu 2 ZnSnS 4 Solar Cell , 2011 .
[36] R. Orr,et al. High Temperature Heat Contenits of Stannous and Stannic Sulfides , 1958 .
[37] P. K. Nair,et al. Structural and chemical transformations in SnS thin films used in chemically deposited photovoltaic cells , 2007 .
[38] W. Biltz. Notizen über Schmelzen und Sublimieren einiger Sulfide , 1908 .
[39] Qi Li,et al. Thermodynamics of the Mg–B system: Implications for the deposition of MgB2 thin films , 2001 .
[40] K. Frisk,et al. The effect of nitrogen on the coarsening rate of precipitate phases in iron-based alloys with chromium and vanadium: experimental and theoretical investigations , 2013 .
[41] Shun-Li Shang,et al. Control of Phase in Tin Sulfide Thin Films Produced via RF-Sputtering of SnS2 Target with Post-deposition Annealing , 2015, Journal of Electronic Materials.
[42] W. Warta,et al. Solar cell efficiency tables (Version 45) , 2015 .
[43] H. Queisser,et al. Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells , 1961 .
[44] Aadarsh Mishra. Thin films of tin sulphide for use in thin film solar cell devices , 2014 .
[45] W. Jaegermann,et al. Van der Waals epitaxy of the layered semiconductors SnSe2 and SnS2: morphology and growth modes , 1997 .
[46] Malin Selleby,et al. Thermodynamic Assessment of the Fe-Mn-O System , 2010 .
[47] G. Kresse,et al. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .
[48] H. J. Vink,et al. Investigations on SnS , 1961 .
[49] Supratik Guha,et al. Thin film solar cell with 8.4% power conversion efficiency using an earth‐abundant Cu2ZnSnS4 absorber , 2013 .
[50] Wei Wang,et al. Device Characteristics of CZTSSe Thin‐Film Solar Cells with 12.6% Efficiency , 2014 .
[51] R. Miles,et al. Thermally evaporated thin films of SnS for application in solar cell devices , 2009 .
[52] T. Eisenbarth,et al. Route Toward High-Efficiency Single-Phase Cu$_{\bf 2}$ ZnSn(S,Se)$_{\bf 4}$ Thin-Film Solar Cells: Model Experiments and Literature Review , 2011, IEEE Journal of Photovoltaics.
[53] W. Boettinger,et al. Development of a Diffusion Mobility Database for Co-Based Superalloys , 2002, Journal of Phase Equilibria and Diffusion.
[54] David Buckingham,et al. Optical Properties. (Book Reviews: Modern Nonlinear Optics.) , 1994 .
[55] A. Ortiz,et al. Fabrication of SnS2/SnS heterojunction thin film diodes by plasma-enhanced chemical vapor deposition , 2005 .
[56] P. Dale,et al. The consequences of kesterite equilibria for efficient solar cells. , 2011, Journal of the American Chemical Society.
[57] H. Noguchi,et al. Characterization of vacuum-evaporated tin sulfide film for solar cell materials , 1994 .
[58] Tadashi Ito,et al. Enhanced Conversion Efficiencies of Cu2ZnSnS4-Based Thin Film Solar Cells by Using Preferential Etching Technique , 2008 .
[59] Shivram S. Garje,et al. Tribenzyltin(IV)chloride Thiosemicarbazones: Novel Single Source Precursors for Growth of SnS Thin Films , 2008 .
[60] I. Parkin,et al. Deposition of tin sulfide thin films from tin(IV) thiolate precursors , 2001 .
[61] Y. Hahn,et al. Temperature-dependent structural and optical properties of SnS films , 2007 .
[62] N. Podraza,et al. Optical Properties of Sputtered SnS Thin Films for Photovoltaic Absorbers , 2013, IEEE Journal of Photovoltaics.
[63] Ursula R. Kattner. Construction of a Thermodynamic Database for Ni-Base Superalloys: A Case Study | NIST , 2002 .
[64] R. Engelken,et al. Optimization of photoconductivity in vacuum-evaporated tin sulfide thin films , 1999 .
[65] Zi-kui Liu. First-Principles Calculations and CALPHAD Modeling of Thermodynamics , 2009 .
[66] J. Campos-Alvarez,et al. Structural, optical, and electrical properties of tin sulfide thin films grown by spray pyrolysis , 2009 .
[67] K. Frisk,et al. Development of a thermodynamic database for cemented carbides for design and processing simulations , 2000 .