End Compactifications in Non-locally-finite Graphs

There are different definitions of ends in non-locally-finite graphs which are all equivalent in the locally finite case. We prove the compactness of the end-topology that is based on the principle of removing finite sets of vertices and give a proof of the compactness of the end-topology that is constructed by the principle of removing finite sets of edges. For the latter case there exists already a proof in [1], which only works on graphs with countably infinite vertex sets and in contrast to which we do not use the Theorem of Tychonoff. We also construct a new topology of ends that arises from the principle of removing sets of vertices with finite diameter and give applications that underline the advantages of this new definition.