Penalty and Smoothing Methods for Convex Semi-Infinite Programming
暂无分享,去创建一个
[1] R. Sheu,et al. Solving Continuous Min-Max Problems by an Iterative Entropic Regularization Method , 2004 .
[2] Marc Teboulle. Nonlinear perturbations for linear semi-infinite optimization problems , 1990, 29th IEEE Conference on Decision and Control.
[3] Johannes O. Royset,et al. Algorithms for Finite and Semi-Infinite Min–Max–Min Problems Using Adaptive Smoothing Techniques , 2003 .
[4] David Q. Mayne,et al. A barrier function method for minimax problems , 1992, Math. Program..
[5] A. A. Goldstein,et al. Newton's method for convex programming and Tchebycheff approximation , 1959, Numerische Mathematik.
[6] M. Teboulle,et al. A smoothing technique for nondifferentiable optimization problems , 1988 .
[7] C. Goh,et al. A simple computational procedure for optimization problems with functional inequality constraints , 1987 .
[8] Rembert Reemtsen,et al. Numerical Methods for Semi-Infinite Programming: A Survey , 1998 .
[9] J. Frédéric Bonnans,et al. Perturbation Analysis of Optimization Problems , 2000, Springer Series in Operations Research.
[10] Ulrich Schättler,et al. An interior-point method for semi-infinite programming problems , 1996, Ann. Oper. Res..
[11] Susana Gómez,et al. A regularization method for solving the finite convex min-max problem , 1990 .
[12] Yurii Nesterov,et al. Smooth minimization of non-smooth functions , 2005, Math. Program..
[13] D. Bertsekas. Approximation procedures based on the method of multipliers , 1977 .
[14] Kok Lay Teo,et al. A new computational algorithm for functional inequality constrained optimization problems , 1993, Autom..
[15] Alfred Auslender. Penalty and Barrier Methods: A Unified Framework , 1999, SIAM J. Optim..
[16] 丸山 徹. Convex Analysisの二,三の進展について , 1977 .
[17] Chih-Jen Lin,et al. An Unconstrained Convex Programming Approach to Linear Semi-Infinite Programming , 1998, SIAM J. Optim..
[18] Johannes O. Royset,et al. Algorithms with Adaptive Smoothing for Finite Minimax Problems , 2003 .
[19] Bernard Martinet,et al. Algorithmes pour la résolution de problèmes d'optimisation et de minimax , 1972 .
[20] Olvi L. Mangasarian,et al. A class of smoothing functions for nonlinear and mixed complementarity problems , 1996, Comput. Optim. Appl..
[21] M. Teboulle,et al. Asymptotic cones and functions in optimization and variational inequalities , 2002 .
[22] Shu-Cherng Fang,et al. Solving min-max problems and linear semi-infinite programs , 1996 .
[23] J. E. Kelley,et al. The Cutting-Plane Method for Solving Convex Programs , 1960 .
[24] Soon-Yi Wu,et al. Combined Entropic Regularization and Path-Following Method for Solving Finite Convex Min-max Problems Subject to Infinitely Many Linear Constraints , 1999 .
[25] Roberto Cominetti,et al. Asymptotic Analysis for Penalty and Barrier Methods in Convex and Linear Programming , 1997, Math. Oper. Res..
[26] Jack Elzinga,et al. A central cutting plane algorithm for the convex programming problem , 1975, Math. Program..
[27] A. Auslender. Méthodes et théorèmes de dualité , 1970 .
[28] Arthur F. Veinott,et al. The Supporting Hyperplane Method for Unimodal Programming , 1967, Oper. Res..
[29] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.