Effect of Zr on Initial Oxidation Behavior of FeCrAl Alloys

[1]  S. Hayashi,et al.  The Transition from Transient Oxide to Protective Al2O3 Scale on Fe–Cr–Al Alloys During Heating to 1000 °C , 2018, Oxidation of Metals.

[2]  S. Hayashi,et al.  The Effect of Cr on the Lifetime of Al-Rich Amorphous Oxide Layer Formed on Fe–Cr–Al Alloys at 650 °C , 2017, Oxidation of Metals.

[3]  S. Hayashi,et al.  Investigation of Initial Transient Oxidation of Fe–xCr–6at.%Al Alloys Using Synchrotron Radiation During Heating to 1000 °C in Air , 2016, Oxidation of Metals.

[4]  W. Quadakkers,et al.  Current Thoughts on Reactive Element Effects in Alumina-Forming Systems: In Memory of John Stringer , 2016, Oxidation of Metals.

[5]  H. Hattendorf,et al.  Effect of Zr Content on the Morphology and Emissivity of Surface Oxide Scales on FeCrAlY Alloys   , 2016 .

[6]  A. Heuer,et al.  The Band Structure of Polycrystalline Al2O3 and Its Influence on Transport Phenomena , 2016 .

[7]  B. Gleeson,et al.  Phase Transformation Behavior of Al2O3 Scale Formed on Pt-Modified γ′-Ni3Al-Based Alloys With and Without Hf Addition , 2012, Oxidation of Metals.

[8]  S. Hayashi,et al.  In Situ Measurement of the Phase Transformation Behavior of Al2O3 Scale during High-Temperature Oxidation using Synchrotron Radiation , 2011 .

[9]  A. Heuer,et al.  Alumina Scale Formation: A New Perspective , 2011 .

[10]  B. Gleeson,et al.  Early-Stage Oxidation Behavior of Pt-Modified γ′-Ni3Al-Based Alloys with and without Hf Addition , 2009 .

[11]  J. Svensson,et al.  Early stages of the oxidation of a FeCrAlRE alloy (Kanthal AF) at 900 °C: A detailed microstructural investigation , 2008 .

[12]  L. Singheiser,et al.  Modification of alumina scale formation on FeCrAlY alloys by minor additions of group IVa elements , 2008 .

[13]  L. Singheiser,et al.  Correlation between the Microstructure, Growth Mechanism, and Growth Kinetics of Alumina Scales on a FeCrAlY Alloy , 2007 .

[14]  P. Hou,et al.  Tensile stress and creep in thermally grown oxide , 2006, Nature materials.

[15]  A. ul-Hamid A TEM study of the oxide scale development in Ni–Cr–Al alloys , 2004 .

[16]  J. Klöwer Factors affecting the oxidation behaviour of thin Fe-Cr-Al foils. Part II: The effect of alloying elements: Overdoping , 2000 .

[17]  B. Pint,et al.  Grain Boundary Segregation of Cation Dopants in α ‐ Al2 O 3 Scales , 1998 .

[18]  M. Grimsditch,et al.  Strain determination in thermally-grown alumina scales using fluorescence spectroscopy , 1997 .

[19]  V. Kolarik,et al.  Oxidation of β‐NiAl, undoped and doped with Ce, Y, Hf , 1996 .

[20]  B. Pint Experimental observations in support of the dynamic-segregation theory to explain the reactive-element effect , 1996 .

[21]  L. Hobbs,et al.  The oxidation mechanism of θ-Al2O3 scales , 1995 .

[22]  J. Jedliński Comments on the effect of yttrium on the early stages of oxidation of alumina formers , 1993 .

[23]  M. Graham,et al.  The oxidation of iron-aluminum alloys , 1992 .

[24]  G. Wallwork,et al.  Observations of nodule growth during the oxidation of pure binary iron-aluminum alloys , 1983 .

[25]  B. Kear,et al.  On the transient oxidation of a Ni-15Cr-6Al alloy , 1971 .

[26]  G. Wood,et al.  Transient oxidation of Ni-base alloys , 1970 .

[27]  A. G. Quarrell,et al.  The Oxidation of Metals , 1954, Nature.