Dynamic generation of subgoals for autonomous mobile robots using local feedback information

An algorithm is presented for using a local feedback information to generate subgoals for driving an autonomous mobile robot (AMR) along a collision-free trajectory to a goal. The subgoals section algorithm (SSA) updates subgoal positions while the AMR is moving so that continuous motion is achieved without stopping to replan a path when new sensor data becomes available. Assuming a finite number of polynomial obstacles (i.e. the internal representation of the local environment in terms of a 2-D map with linear obstacles boundaries) and a dynamic steering control algorithm (SCA) capable of driving the AMR to safe subgoals, it is shown that the feedback algorithm for subgoal selection will direct the AMR along a collision-free trajectory to the final goal in finite time. Properties of the algorithm are illustrated by simulation examples. >

[1]  Charles E. Thorpe,et al.  Path Relaxation: Path Planning for a Mobile Robot , 1984, AAAI.

[2]  J. Nitao,et al.  An intelligent system for an autonomous vehicle , 1986, Proceedings. 1986 IEEE International Conference on Robotics and Automation.

[3]  George Leitmann,et al.  A note on avoidance control , 1981 .

[4]  Larry S. Davis,et al.  A visual navigation system for autonomous land vehicles , 1987, IEEE J. Robotics Autom..

[5]  Takeo Kanade,et al.  Progress in robot road-following , 1986, Proceedings. 1986 IEEE International Conference on Robotics and Automation.

[6]  Alex Meystel,et al.  Simulation of path planning for a system with vision and map updating , 1985, Proceedings. 1985 IEEE International Conference on Robotics and Automation.

[7]  J. Nitao,et al.  A real-time reflexive pilot for an autonomous land vehicle , 1986, IEEE Control Systems Magazine.

[8]  David W. Payton,et al.  An architecture for reflexive autonomous vehicle control , 1986, Proceedings. 1986 IEEE International Conference on Robotics and Automation.

[9]  Rodney A. Brooks,et al.  A Robust Layered Control Syste For A Mobile Robot , 2022 .

[10]  Bruce H. Krogh,et al.  Integrated path planning and dynamic steering control for autonomous vehicles , 1986, Proceedings. 1986 IEEE International Conference on Robotics and Automation.

[11]  S. Sitharama Iyengar,et al.  Robot navigation in unknown terrains using learned visibility graphs. Part I: The disjoint convex obstacle case , 1987, IEEE Journal on Robotics and Automation.

[12]  Georges Giralt,et al.  An Integrated Navigation and Motion Control System for Autonomous Multisensory Mobile Robots , 1990, Autonomous Robot Vehicles.

[13]  Larry S. Davis,et al.  Multiresolution path planning for mobile robots , 1986, IEEE J. Robotics Autom..

[14]  Hans P. Moravec,et al.  The Stanford Cart and the CMU Rover , 1983, Proceedings of the IEEE.

[15]  Takeo Kanade,et al.  Autonomous land vehicle project at CMU , 1986, CSC '86.

[16]  B. R. Barmish,et al.  Guaranteed Avoidance Control and Holding Control , 1982 .

[17]  V. Lumelsky,et al.  Dynamic path planning for a mobile automaton with limited information on the environment , 1986 .

[18]  George Leitmann,et al.  Guaranteed avoidance strategies , 1980 .