Constrained particle swarm optimisation for sequential quadratic programming

Sequential quadratic programming (SQP) methods are commonly used to solve constrained non-linear optimisation problems. However, in recent years there has been great improvement in using evolutionary algorithms to solve non-linear optimisations problems. The difficulty has been determining a correct method for implementing evolutionary algorithm for a non-linear optimisation problem with constraints. In this paper, we are combining the strengths of the traditional SQP method with an evolutionary algorithm, particle swarm optimisation (PSO) for solving a constrained non-linear optimisation problem with equality and inequality constraints. We propose a constrained PSO algorithm be used to solve the quadratic programming (QP) subproblem within the SQP method.