Devices, algorithms and systems for maritime persistent surveillance

This thesis presents a novel approach to long-term marine data collection and monitoring. Long-term marine data collection is a key component for understanding planetary scale physical processes and for studying and understanding marine life. Marine monitoring is an important activity for border protection, port security and offshore oil field operations. However, monitoring is not easy because salt water is a harsh environment for humans and for instruments. Radio communication and remote sensing are difficult below ocean surface. Our approach to ocean data collection relies on the integration of (1) a network of underwater sensor nodes with acoustic and optical communication, (2) an autonomous underwater vehicle (AUV) and (3) a novel sensing device. A key characteristic is the extensive use of visible light for information transfer underwater. We use light for sensing, communication and control. We envision a system composed of sensor nodes that are deployed at static locations for data collection. Using acoustic signaling and pairwise ranging the sensor nodes can compute their positions (self-localize) and track mobile objects (e.g., AUVs). The AUV can visit the sensor nodes periodically and download their data using the high speed, low power optical communication. One consequence of using optical communication for the bulk of the data transfer is that less data needs to be transferred over the acoustic links, thus enabling the use of low power, low data rate techniques. For navigation, the AUV can rely on the tracking information provided by the sensor network. In addition, the AUV can dock and transport sensor nodes efficiently, enabling their autonomous relocation and recovery. The main application of our system is coral reef ecosystem research and health monitoring. In this application the robot and the sensor nodes can be fitted with our novel imaging sensor, capable of taking underwater color-accurate photographs for reef health assessment and species identification. Compared to existing techniques, our approach: (1) simplifies the deployment of sensors through sensor self-localization, (2) provides sensor status information and thus enables the user to capture rare events or to react to sensor failure, (3) provides the user real time data and thus enables adaptive sampling, (4) simplifies mobile sensing underwater by providing position information to underwater robots, (5) collects new types of data (accurate color images) through the use of new sensors. We present several innovations that enable our approach: (1) an adaptive illumination approach to underwater imaging, (2) an underwater optical communication system using green light, (3) a low power modulation and medium access protocol for underwater acoustic telemetry, (4) a new AUV design capable of hovering and of efficiently transporting dynamic payloads. We present the design, fabrication and evaluation of a hardware platform to validate our approach. Our platform includes: (1) AQUAN ET, a wireless underwater sensor network composed of AQUAN ODES, (2) AMOUR, an underwater vehicle capable of autonomous navigation, data muling, docking and efficient transport of dynamic payloads and (3) AQUALIGHT an underwater variable-spectrum Xenon strobe which enables underwater color accurate photography. We use this platform to implement and experimentally evaluate our algorithms and protocols. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253-1690.)

[1]  C. Patel,et al.  Optical absorptions of light and heavy water by laser optoacoustic spectroscopy. , 1979, Applied optics.

[2]  Peter I. Corke,et al.  A Hybrid AUV Design for Shallow Water Reef Navigation , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[3]  E. Fry,et al.  Absorption spectrum (340-640 nm) of pure water. I. Photothermal measurements. , 1997, Applied optics.

[4]  John J. Leonard,et al.  Passive Mobile Robot Localization within a Fixed Beacon Field , 2006, WAFR.

[5]  M. Chitre,et al.  Hardware architecture for a modular autonomous underwater vehicle STARFISH , 2008, OCEANS 2008.

[6]  J. Gallagher,et al.  Refractive index of water and steam as function of wavelength, temperature and density , 1990 .

[7]  Brian Neil Levine,et al.  A survey of practical issues in underwater networks , 2006, MOCO.

[8]  G. Wyszecki Proposal for a New Color-Difference Formula , 1963 .

[9]  B. Allen,et al.  Development of the REMUS 600 autonomous underwater vehicle , 2005, Proceedings of OCEANS 2005 MTS/IEEE.

[10]  Thor I. Fossen,et al.  Underwater Robotics , 2008, Springer Handbook of Robotics.

[11]  Gregory J. Pottie,et al.  Wireless sensor networks , 1998, 1998 Information Theory Workshop (Cat. No.98EX131).

[12]  D. J. Segelstein The complex refractive index of water , 1981 .

[13]  John J. Leonard,et al.  A second generation survey AUV , 1994, Proceedings of IEEE Symposium on Autonomous Underwater Vehicle Technology (AUV'94).

[14]  Mingsong Chen,et al.  Study and implementation for range-gated underwater laser imaging system , 2008, Applied Optics and Photonics China.

[15]  Rodney A. Brooks,et al.  Cambrian Intelligence: The Early History of the New AI , 1999 .

[16]  X. Lurton An Introduction to Underwater Acoustics , 2002 .

[17]  B. A. Mikhailov,et al.  Dispersion and Absorption of Liquid Water in the Infrared and Radio Regions of the Spectrum , 1969 .

[18]  Anne C. Crook,et al.  Colour patterns in a coral reef fish is background complexity important , 1997 .

[19]  Karen S. Baker,et al.  Bio-optical classification and model of natural waters. 21 , 1982 .

[20]  Chi-Ho Chan,et al.  Optical wireless based on high brightness visible LEDs , 1999, Conference Record of the 1999 IEEE Industry Applications Conference. Thirty-Forth IAS Annual Meeting (Cat. No.99CH36370).

[21]  P. Munday,et al.  Genetic and Ecological Characterisation of Colour Dimorphism in a Coral Reef Fish , 2005, Environmental Biology of Fishes.

[22]  Junku Yuh,et al.  Development of an underwater robot, ODIN-III , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[23]  N. E. Dorsey Properties of ordinary water-substance in all its phases : water-vapor, water, and all the ices , 1940 .

[24]  Ian Gilhespy,et al.  DIVEBOT: A diving robot with a whale-like buoyancy mechanism , 2003, Robotica.

[25]  Hanumant Singh,et al.  Surveying a Subsea Lava Flow Using the Autonomous Benthic Explorer (abe) , 1998, Int. J. Syst. Sci..

[26]  L. Kou,et al.  Refractive indices of water and ice in the 0.65- to 2.5-µm spectral range. , 1993, Applied optics.

[27]  Iuliu Vasilescu,et al.  Autonomous Modular Optical Underwater Robot (AMOUR) Design, Prototype and Feasibility Study , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[28]  Shree K. Nayar,et al.  Structured light in scattering media , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[29]  E. Land,et al.  Lightness and retinex theory. , 1971, Journal of the Optical Society of America.

[30]  Mac Schwager,et al.  Data‐driven identification of group dynamics for motion prediction and control , 2008, J. Field Robotics.

[31]  J. W. Govoni,et al.  Absorption coefficients of ice from 250 to 400 nm , 1991 .

[32]  R. Davis,et al.  The autonomous underwater glider "Spray" , 2001 .

[33]  C. Roman,et al.  Imaging Coral I: Imaging Coral Habitats with the SeaBED AUV , 2004 .

[34]  M. Querry,et al.  Wedge shaped cell for highly absorbent liquids: infrared optical constants of water. , 1989, Applied optics.

[35]  A.B. Baggeroer,et al.  The state of the art in underwater acoustic telemetry , 2000, IEEE Journal of Oceanic Engineering.

[36]  Robin Merl Pope Optical Absorption of Pure Water and Sea Water Using the Integrating Cavity Absorption Meter. , 1993 .

[37]  A. Baggeroer,et al.  Acoustic telemetry - An overview , 1984, IEEE Journal of Oceanic Engineering.

[38]  P. Corke,et al.  Krill: an exploration in underwater sensor networks , 2005, The Second IEEE Workshop on Embedded Networked Sensors, 2005. EmNetS-II..

[39]  F.S. Hover,et al.  Design and projected performance of a flapping foil AUV , 2004, IEEE Journal of Oceanic Engineering.

[40]  P. Munday,et al.  Phylogeography of colour polymorphism in the coral reef fish Pseudochromis fuscus, from Papua New Guinea and the Great Barrier Reef , 2005, Coral Reefs.

[41]  G. Kattawar,et al.  Integrating cavity absorption meter. , 1992, Applied optics.

[42]  Seraphin A. Sullivan Experimental Study of the Absorption in Distilled Water, Artificial Sea Water, and Heavy Water in the Visible Region of the Spectrum* , 1963 .

[43]  M. Stojanovic,et al.  Multi-cluster protocol for ad hoc mobile underwater acoustic networks , 2003, Oceans 2003. Celebrating the Past ... Teaming Toward the Future (IEEE Cat. No.03CH37492).

[44]  Milica Stojanovic,et al.  Shallow-Water Acoustic Networks† , 2003 .

[45]  T. Platt,et al.  Analytic model of ocean color. , 1997, Applied optics.

[46]  Chris Murphy,et al.  Deep sea underwater robotic exploration in the ice-covered Arctic ocean with AUVs , 2008, 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[47]  T. I. Quickenden,et al.  The ultraviolet absorption spectrum of liquid water , 1980 .

[48]  G.I. Allen,et al.  Initial evaluation of the new real-time tracking gradiometer designed for small unmanned underwater vehicles , 2005, Proceedings of OCEANS 2005 MTS/IEEE.

[49]  E A McLean,et al.  Short-pulse range-gated optical imaging in turbid water. , 1995, Applied optics.

[50]  M. Stojanovic,et al.  Underwater acoustic networks , 2000, IEEE Journal of Oceanic Engineering.

[51]  Gregory Dudek,et al.  A Statistical Learning-Based Method for Color Correction of Underwater Images , 2005 .

[52]  F. Hanson,et al.  High bandwidth underwater optical communication. , 2008, Applied optics.

[53]  Carrick Detweiler,et al.  Saving Energy with Buoyancy and Balance Control for Underwater Robots with Dynamic Payloads , 2008, ISER.

[54]  Keith L. Doty,et al.  The Development of a Highly Maneuverable Underwater Vehicle , 1998 .

[55]  E. Fry,et al.  Empirical equation for the index of refraction of seawater. , 1995, Applied optics.

[56]  Peter I. Corke,et al.  Data collection, storage, and retrieval with an underwater sensor network , 2005, SenSys '05.

[57]  Masakazu Takahata,et al.  An optical telemetry system for underwater recording of electromyogram and neuronal activity from non-tethered crayfish , 2004, Journal of Neuroscience Methods.

[58]  F. M. Sogandares The Spectral Absorption of Pure Water , 1991 .

[59]  Rodney A. Brooks,et al.  A Robust Layered Control Syste For A Mobile Robot , 2022 .

[60]  Mark Alan Chancey,et al.  Short Range Underwater Optical Communication Links , 2005 .

[61]  L. Prieur,et al.  Analysis of variations in ocean color1 , 1977 .

[62]  D. Yoerger,et al.  A Mission Controller for High Level Control of Autonomous and Semi-Autonomous Underwater Vehicles , 2006, OCEANS 2006.

[63]  Dudley A. Williams,et al.  Optical properties of water in the near infrared. , 1974 .

[64]  Dario Pompili,et al.  Efficient Communication Protocols for Underwater Acoustic Sensor Networks , 2007 .

[65]  H. Claustre,et al.  Variability in the chlorophyll‐specific absorption coefficients of natural phytoplankton: Analysis and parameterization , 1995 .

[66]  S. Warren,et al.  Optical constants of ice from the ultraviolet to the microwave. , 1984, Applied optics.

[67]  L. Boivin,et al.  Determination of the attenuation coefficients of visible and ultraviolet radiation in heavy water. , 1986, Applied optics.

[68]  Atsushi Yamashita,et al.  Color Registration of Underwater Images for Underwater Sensing with Consideration of Light Attenuation , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[69]  Peter I. Corke,et al.  Data muling over underwater wireless sensor networks using an autonomous underwater vehicle , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[70]  E. Fry,et al.  Absorption spectrum (380-700 nm) of pure water. II. Integrating cavity measurements. , 1997, Applied optics.

[71]  M. Querry,et al.  Split-pulse laser method for measuring attenuation coefficients of transparent liquids: application to deionized filtered water in the visible region. , 1978, Applied optics.

[72]  I. Bankman,et al.  Underwater optical communications systems. Part 2: basic design considerations , 2005, MILCOM 2005 - 2005 IEEE Military Communications Conference.

[73]  K. Baker,et al.  Optical properties of the clearest natural waters (200-800 nm). , 1981, Applied optics.

[74]  Peter I. Corke,et al.  Experiments with Underwater Robot Localization and Tracking , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[75]  Hendrik Buiteveld,et al.  Optical properties of pure water , 1994, Other Conferences.

[76]  Gregory J. Pottie,et al.  Wireless integrated network sensors , 2000, Commun. ACM.

[77]  William M. Irvine,et al.  Infrared optical properties of water and ice spheres , 1968 .

[78]  S. Nayar,et al.  Structured light methods for underwater imaging: light stripe scanning and photometric stereo , 2005, Proceedings of OCEANS 2005 MTS/IEEE.

[79]  D. Rus,et al.  An Underwater Sensor Network with Dual Communications, Sensing, and Mobility , 2007, OCEANS 2007 - Europe.

[80]  Louis L. Whitcomb,et al.  The Sentry Autonomous Underwater Vehicle: Field Trial Results and Future Capabilities , 2006 .

[81]  Hans R. Zelsmann,et al.  Temperature dependence of the optical constants for liquid H2O and D2O in the far IR region , 1995 .

[82]  Lee Freitag,et al.  A network protocol for multiple AUV localization , 2002, OCEANS '02 MTS/IEEE.

[83]  Rodney A. Brooks,et al.  Integrated systems based on behaviors , 1991, SGAR.

[84]  J. Trumpf,et al.  Visible Spectrum Optical Communication and Distance Sensing for Underwater Applications , 2004 .

[85]  L. Prieur,et al.  An optical classification of coastal and oceanic waters based on the specific spectral absorption curves of phytoplankton pigments, dissolved organic matter, and other particulate materials1 , 1981 .

[86]  Gregory J. Pottie,et al.  Instrumenting the world with wireless sensor networks , 2001, 2001 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.01CH37221).

[87]  Sanjay Kumar Madria,et al.  Sensor networks: an overview , 2003 .

[88]  E. Esmail,et al.  Refractive index of salt water: effect of temperature , 1993 .

[89]  D. Macleod,et al.  Spectral sensitivities of the human cones. , 1993, Journal of the Optical Society of America. A, Optics, image science, and vision.

[90]  Julia Åhlén,et al.  Colour Correction of Underwater Images Using Spectral Data , 2005 .

[91]  James Preisig,et al.  Acoustic propagation considerations for underwater acoustic communications network development , 2006, Underwater Networks.

[92]  Alessandro Rizzi,et al.  Underwater color constancy: enhancement of automatic live fish recognition , 2003, IS&T/SPIE Electronic Imaging.

[93]  Andrew Hogue,et al.  AQUA: An Amphibious Autonomous Robot , 2007, Computer.

[94]  P. Firoozfam,et al.  An ROV Stereovision System for Ship-Hull Inspection , 2006, IEEE Journal of Oceanic Engineering.

[95]  L. Giosan,et al.  Paleoceanographic significance of sediment color on western North Atlantic Drifts: II. Late Pliocene–Pleistocene sedimentation , 2002 .

[96]  R. W. Austin,et al.  The Index of Refraction of Seawater , 1976 .

[97]  Dario Pompili,et al.  Underwater acoustic sensor networks: research challenges , 2005, Ad Hoc Networks.

[98]  Kenneth R. N. Anthony,et al.  Coral mortality following extreme low tides and high solar radiation , 2007 .

[99]  Hanumant Singh,et al.  Visually Mapping the RMS Titanic: Conservative Covariance Estimates for SLAM Information Filters , 2006, Int. J. Robotics Res..

[100]  Iuliu Vasilescu,et al.  Miche: Modular Shape Formation by Self-Disassembly , 2008, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[101]  J. Vaganay,et al.  Ship Hull Inspection with the HAUV: US Navy and NATO Demonstrations Results , 2006, OCEANS 2006.

[102]  G. M. Hale,et al.  Optical Constants of Water in the 200-nm to 200-microm Wavelength Region. , 1973, Applied optics.

[103]  K. S. Shifrin Physical optics of ocean water , 1988 .

[104]  Carrick Detweiler,et al.  AquaNodes: an underwater sensor network , 2007, Underwater Networks.

[105]  M. Nechyba,et al.  SubjuGator : A Highly Maneuverable , Intelligent Underwater Vehicle , 1999 .

[106]  C. C. Eriksen,et al.  Seaglider: a long-range autonomous underwater vehicle for oceanographic research , 2001 .

[107]  Luc Jaulin,et al.  Automatic underwater image pre-processing , 2006 .

[108]  R. A. Salam,et al.  Underwater Image Enhancement Using an Integrated Colour Model , 2007 .

[109]  Ryan M. Eustice,et al.  Large-area visually augmented navigation for autonomous underwater vehicles , 2005 .

[110]  R.J. Komerska,et al.  Long-Endurance Test Results of the Solar-Powered AUV System , 2006, OCEANS 2006.

[111]  H. Singh,et al.  Advances in large-area photomosaicking underwater , 2004, IEEE Journal of Oceanic Engineering.

[112]  Martin Edge,et al.  The Underwater Photographer , 1996 .