Müntz-Galerkin Methods and Applications to Mixed Dirichlet-Neumann Boundary Value Problems

Solutions for many problems of interest exhibit singular behaviors at domain corners or points where the boundary condition changes type. For these types of problems, direct spectral methods with the usual polynomial basis functions do not lead to a satisfactory convergence rate. We develop in this paper a Muntz--Galerkin method which is based on specially tuned Muntz polynomials to deal with the singular behaviors of the underlying problems. By exploring the relations between Jacobi polynomials and Muntz polynomials, we develop efficient implementation procedures for the Muntz--Galerkin method, and provide optimal error estimates. As an example of applications, we consider the Poisson equation with mixed Dirichlet--Neumann boundary conditions, whose solution behaves like $O(r^{1/2})$ near the singular point, and demonstrate that the Muntz--Galerkin method greatly improves the rates of convergence of the usual spectral method.

[1]  L. Marina,et al.  Treatment of singularities in Helmholtz-type equations using the boundary element method , 2004 .

[2]  Ryszard Szwarc CONNECTION COEFFICIENTS OF ORTHOGONAL POLYNOMIALS WITH APPLICATIONS TO CLASSICAL ORTHOGONAL POLYNOMIALS , 1993 .

[3]  Jie Shen,et al.  Efficient Spectral-Galerkin Methods III: Polar and Cylindrical Geometries , 1997, SIAM J. Sci. Comput..

[4]  Tamás Erdélyi,et al.  Müntz systems and orthogonal Müntz-Legendre polynomials , 1994 .

[5]  Ricardo H. Nochetto,et al.  Convergence of Adaptive Finite Element Methods , 2002, SIAM Rev..

[6]  Gradimir V. Milovanović,et al.  Müntz Orthogonal Polynomials and Their Numerical Evaluation , 1999 .

[7]  Dmitry Jakobson,et al.  Spectral problems with mixed Dirichlet-Neumann boundary conditions: isospectrality and beyond , 2004 .

[8]  G. Lombardi Design of quadrature rules for Müntz and Müntz‐logarithmic polynomials using monomial transformation , 2009 .

[9]  N. Nadirashvili,et al.  How large can the first eigenvalue be on a surface of genus two , 2005, math/0509398.

[10]  T. A. Zang,et al.  Spectral Methods: Fundamentals in Single Domains , 2010 .

[11]  ShenJie Efficient spectral-Galerkin method I , 1994 .

[12]  Muntz Type Theorems I , 2007, 0710.3570.

[13]  Jie Shen,et al.  Optimal Spectral-Galerkin Methods Using Generalized Jacobi Polynomials , 2006, J. Sci. Comput..

[14]  T. Lu,et al.  Singularities and treatments of elliptic boundary value problems , 2000 .

[15]  Jie Shen,et al.  Spectral and High-Order Methods with Applications , 2006 .

[16]  Jie Shen,et al.  Spectral Methods: Algorithms, Analysis and Applications , 2011 .

[17]  Jie Shen,et al.  Generalized Jacobi polynomials/functions and their applications , 2009 .

[18]  T. Belytschko,et al.  The extended/generalized finite element method: An overview of the method and its applications , 2010 .

[19]  I. Babuska,et al.  Stable Generalized Finite Element Method (SGFEM) , 2011, 1104.0960.

[20]  D. Gottlieb,et al.  Numerical analysis of spectral methods : theory and applications , 1977 .

[21]  Gene H. Golub,et al.  Applications and Computation of Orthogonal Polynomials , 1999 .

[22]  Úlfar F. Stefánsson Asymptotic Behavior of Müntz Orthogonal Polynomials , 2010 .

[23]  Jie Shen,et al.  Efficient Spectral-Galerkin Method I. Direct Solvers of Second- and Fourth-Order Equations Using Legendre Polynomials , 1994, SIAM J. Sci. Comput..

[24]  Shahrokh Esmaeili,et al.  Numerical solution of fractional differential equations with a collocation method based on Müntz polynomials , 2011, Comput. Math. Appl..

[25]  H. Motz,et al.  The treatment of singularities of partial differential equations by relaxation methods , 1947 .

[26]  P. Grisvard Elliptic Problems in Nonsmooth Domains , 1985 .