Hierarchical relational models for document networks
暂无分享,去创建一个
[1] Donald B. Rubin,et al. Max-imum Likelihood from Incomplete Data , 1972 .
[2] T. Ferguson. A Bayesian Analysis of Some Nonparametric Problems , 1973 .
[3] C. Antoniak. Mixtures of Dirichlet Processes with Applications to Bayesian Nonparametric Problems , 1974 .
[4] D. Rubin,et al. Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .
[5] M. M. Meyer,et al. Statistical Analysis of Multiple Sociometric Relations. , 1985 .
[6] S. Wasserman,et al. Logit models and logistic regressions for social networks: I. An introduction to Markov graphs andp , 1996 .
[7] Tom M. Mitchell,et al. Learning to Extract Symbolic Knowledge from the World Wide Web , 1998, AAAI/IAAI.
[8] M. KleinbergJon. Authoritative sources in a hyperlinked environment , 1999 .
[9] S. Wasserman,et al. Logit models and logistic regressions for social networks: II. Multivariate relations. , 1999, The British journal of mathematical and statistical psychology.
[10] David A. Cohn,et al. The Missing Link - A Probabilistic Model of Document Content and Hypertext Connectivity , 2000, NIPS.
[11] James H. Martin,et al. Speech and language processing: an introduction to natural language processing, computational linguistics, and speech recognition, 2nd Edition , 2000, Prentice Hall series in artificial intelligence.
[12] P. Donnelly,et al. Inference of population structure using multilocus genotype data. , 2000, Genetics.
[13] Ben Taskar,et al. Learning Probabilistic Models of Relational Structure , 2001, ICML.
[14] Peter D. Hoff,et al. Latent Space Approaches to Social Network Analysis , 2002 .
[15] Mark Newman,et al. The structure and function of networks , 2002 .
[16] Ben Taskar,et al. Link Prediction in Relational Data , 2003, NIPS.
[17] Michael I. Jordan,et al. Modeling annotated data , 2003, SIGIR.
[18] David A. Forsyth,et al. Matching Words and Pictures , 2003, J. Mach. Learn. Res..
[19] Michael I. Jordan,et al. Latent Dirichlet Allocation , 2001, J. Mach. Learn. Res..
[20] Thomas L. Griffiths,et al. Discovering Latent Classes in Relational Data , 2004 .
[21] Andrew McCallum,et al. Automating the Construction of Internet Portals with Machine Learning , 2000, Information Retrieval.
[22] Michael I. Jordan,et al. An Introduction to Variational Methods for Graphical Models , 1999, Machine Learning.
[23] J. Lafferty,et al. Mixed-membership models of scientific publications , 2004, Proceedings of the National Academy of Sciences of the United States of America.
[24] Dunja Mladenic,et al. Proceedings of the 3rd international workshop on Link discovery , 2005, KDD 2005.
[25] Andrew McCallum,et al. Topic and Role Discovery in Social Networks , 2005, IJCAI.
[26] Pietro Perona,et al. A Bayesian hierarchical model for learning natural scene categories , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).
[27] Andrew McCallum,et al. Group and topic discovery from relations and text , 2005, LinkKDD '05.
[28] Martin J. Wainwright,et al. A variational principle for graphical models , 2005 .
[29] Edoardo M. Airoldi,et al. Stochastic Block Models of Mixed Membership , 2006 .
[30] Michael I. Jordan,et al. Hierarchical Dirichlet Processes , 2006 .
[31] Hans-Peter Kriegel,et al. Infinite Hidden Relational Models , 2006, UAI.
[32] Michael I. Jordan,et al. Variational inference for Dirichlet process mixtures , 2006 .
[33] Thomas L. Griffiths,et al. Probabilistic Topic Models , 2007 .
[34] Steffen Bickel,et al. Unsupervised prediction of citation influences , 2007, ICML '07.
[35] David M. Blei,et al. Supervised Topic Models , 2007, NIPS.
[36] Terrence J. Sejnowski,et al. A Variational Principle for Graphical Models , 2007 .
[37] Danielle S. McNamara,et al. Handbook of latent semantic analysis , 2007 .
[38] S. Fienberg,et al. DESCRIBING DISABILITY THROUGH INDIVIDUAL-LEVEL MIXTURE MODELS FOR MULTIVARIATE BINARY DATA. , 2007, The annals of applied statistics.
[39] Volker Tresp,et al. Nonparametric Relational Learning for Social Network Analysis , 2008 .
[40] David M. Blei,et al. Syntactic Topic Models , 2008, NIPS.
[41] Janne Sinkkonen,et al. Component models for large networks , 2008, 0803.1628.
[42] Ramesh Nallapati,et al. Link-PLSA-LDA: A New Unsupervised Model for Topics and Influence of Blogs , 2021, ICWSM.
[43] Chris H Wiggins,et al. Bayesian approach to network modularity. , 2007, Physical review letters.
[44] Michal Rosen-Zvi,et al. Latent Topic Models for Hypertext , 2008, UAI.
[45] Deng Cai,et al. Topic modeling with network regularization , 2008, WWW.
[46] Michael I. Jordan,et al. Graphical Models, Exponential Families, and Variational Inference , 2008, Found. Trends Mach. Learn..
[47] Edoardo M. Airoldi,et al. Mixed Membership Stochastic Blockmodels , 2007, NIPS.
[48] Ramesh Nallapati,et al. Joint latent topic models for text and citations , 2008, KDD.
[49] I. C. Gormley,et al. A grade of membership model for rank data , 2009 .
[50] Jon D. McAuliffe,et al. Variational Inference for Large-Scale Models of Discrete Choice , 2007, 0712.2526.