Dielectric characteristics of polyimide CP2

Abstract High-performance aerospace-grade polyimides such as CP2 fulfill many important roles in a wide range of applications. A thorough understanding of the polymer matrix’s physiochemical properties is an important consideration when developing polymer nanocomposite materials. In this work, we report the dielectric properties of polyimide CP2 including the primary and two secondary dipole relaxations, and their thermal characteristics by way of temperature variable impedance spectroscopy (10 −2 to 10 6  Hz, −40 to 225 °C). Special emphasis has been placed on detailing the characteristic phenomena near CP2′s glass transition (199 °C). The consequences of residual DMAc solvent on CP2′s overall loss and relaxation characteristics are also discussed.

[1]  Tze-Man Ko,et al.  Effect of polyimides with different ratios of para- to meta- analogous fluorinated diamines on relaxation process , 2001 .

[2]  Kaplan,et al.  Effect of disorder on a fractal model for the ac response of a rough interface. , 1985, Physical review. B, Condensed matter.

[3]  W. Kauzmann Dielectric Relaxation as a Chemical Rate Process , 1942 .

[4]  J. Rault,et al.  Origin of the Vogel-Fulcher-Tammann law in glass-forming materials : the α-β bifurcation , 2000 .

[5]  Steven C. Roth,et al.  Monitoring the relaxation behavior of nylon/clay nanocomposites in the melt with an online dielectric sensor , 2005 .

[6]  K. Watson,et al.  Transparent, flexible, conductive carbon nanotube coatings for electrostatic charge mitigation , 2005 .

[7]  C. Angell,et al.  Nonexponential relaxations in strong and fragile glass formers , 1993 .

[8]  Richard A. Vaia,et al.  Direct imaging of current paths in multiwalled carbon nanofiber polymer nanocomposites using conducting-tip atomic force microscopy , 2008 .

[9]  B. Boukamp A Nonlinear Least Squares Fit procedure for analysis of immittance data of electrochemical systems , 1986 .

[10]  R. B. Prime,et al.  Thermal Analysis of Polymers , 2009 .

[11]  R. Vaia,et al.  Direct measurement of the percolation probability in carbon nanofiber-polyimide nanocomposites. , 2009, Physical review letters.

[12]  Friedrich Kremer,et al.  Broadband dielectric spectroscopy , 2003 .

[13]  D. Plazek,et al.  Temperature Dependences of the Viscoelastic Response of Polymer Systems , 2007 .

[14]  D. Plazek,et al.  The Glass Temperature , 2007 .

[15]  K. L. Mittal,et al.  Polyimides: Fundamentals and Applications , 1996 .

[16]  Graham Williams,et al.  Anelastic and Dielectric Effects in Polymeric Solids , 1991 .

[17]  W. Kenan,et al.  Impedance Spectroscopy: Emphasizing Solid Materials and Systems , 1987 .

[18]  T. Yalçınyuva,et al.  A novel cross-linked polyimide film: synthesis and dielectric properties , 2005 .

[19]  J. Weiner,et al.  Fundamentals and applications , 2003 .

[20]  J. E. Mark,et al.  Physical properties of polymers handbook , 2007 .

[21]  Jeffrey A. Hinkley,et al.  Crystallization of Stretched Polyimides: A Structure-Property Study , 2002 .

[22]  S. Muruganand,et al.  Dielectric and conduction properties of pure polyimide films , 2001 .

[23]  Yuri Feldman,et al.  Electrode polarization correction in time domain dielectric spectroscopy , 2001 .

[24]  R. Vaia,et al.  Thermal−Electrical Character of in Situ Synthesized Polyimide-Grafted Carbon Nanofiber Composites , 2008 .

[25]  D. N. Perera Compilation of the fragility parameters for several glass-forming metallic alloys , 1999 .

[26]  Pierangelo Rolla,et al.  Dielectric monitoring of epoxy cure , 1996 .

[27]  S. Havriliak,et al.  A complex plane analysis of α‐dispersions in some polymer systems , 2007 .

[28]  A. Schönhals Molecular Dynamics in Polymer Model Systems , 2003 .

[29]  F. Kremer,et al.  The Scaling of the Dynamics of Glasses and Supercooled Liquids , 2003 .

[30]  Martin Goldstein,et al.  Viscous Liquids and the Glass Transition. II. Secondary Relaxations in Glasses of Rigid Molecules , 1970 .

[31]  R. Vaia,et al.  Dynamics of alkyl ammonium intercalants within organically modified montmorillonite: Dielectric relaxation and ionic conductivity. , 2006, The journal of physical chemistry. B.

[32]  C. Angell Entropy and Fragility in Supercooling Liquids , 1997, Journal of research of the National Institute of Standards and Technology.

[33]  David H. Wang,et al.  Nanocomposites Derived from a Low-Color Aromatic Polyimide (CP2) and Amine-Functionalized Vapor-Grown Carbon Nanofibers: In Situ Polymerization and Characterization , 2007 .

[34]  Uttandaraman Sundararaj,et al.  A review of vapor grown carbon nanofiber/polymer conductive composites , 2009 .

[35]  J. van Turnhout,et al.  Analysis of complex dielectric spectra. I. One-dimensional derivative techniques and three-dimensional modelling , 2002 .

[36]  H. J. Wintle,et al.  Linear and nonlinear data fitting for dielectrics , 2002 .

[37]  John Aurie Dean,et al.  Lange's Handbook of Chemistry , 1978 .

[38]  Mats Robertsson,et al.  Broadband Dielectric Characterization of a Silicone Elastomer , 2007 .

[39]  D. Bedrov,et al.  Relationship between the α‐ and β‐relaxation processes in amorphous polymers: Insight from atomistic molecular dynamics simulations of 1,4‐polybutadiene melts and blends , 2007 .

[40]  Abraham Nudelman,et al.  NMR Chemical Shifts of Common Laboratory Solvents as Trace Impurities. , 1997, The Journal of organic chemistry.