Influence of the different carbon nanotubes on the development of electrochemical sensors for bisphenol A.

Different methods of functionalisation and the influence of the multi-walled carbon nanotube sizes were investigated on the bisphenol A electrochemical determination. Samples with diameters of 20 to 170 nmwere functionalized in HNO3 5.0 mol L(-1) and a concentrated sulphonitric solution. The morphological characterisations before and after acid treatment were carried out by scanning electron microscopy and cyclic voltammetry. The size and acid treatment affected the oxidation of bisphenol A. The multi-walled carbon nanotubes with a 20-40 nm diameter improved the method sensitivity and achieved a detection limit for determination of bisphenol A at 84.0 nmol L(-1).

[1]  B. Rezaei,et al.  Square wave voltammetric determination of Dexamethasone on a multiwalled carbon nanotube modified pencil electrode , 2011 .

[2]  M. Álvarez,et al.  Rapid generation of protein aerosols and nanoparticles via SAW atomisation , 2008 .

[3]  Jianshe Liu,et al.  Sensitive Voltammetric Detection of Trace Heavy Metals in Real Water Using Multi‐Wall Carbon Nanotubes/Nafion Composite Film Electrode , 2011 .

[4]  M. Cabral,et al.  The electrochemical effect of acid functionalisation of carbon nanotubes to be used in sensors development , 2011 .

[5]  G. Rivas,et al.  Quantification of Quercetin Using Glassy Carbon Electrodes Modified with Multiwalled Carbon Nanotubes Dispersed in Polyethylenimine and Polyacrylic Acid , 2010 .

[6]  Wei Wang,et al.  Preparation and properties of bisphenol A sensor based on multiwalled carbon nanotubes/Li4Ti5O12-modified electrode , 2015, Ionics.

[7]  C. Brett,et al.  Electrochemical impedance studies of chitosan-modified electrodes for application in electrochemical sensors and biosensors , 2010 .

[8]  M. Stelzle,et al.  Application of PEDOT‐CNT Microelectrodes for Neurotransmitter Sensing , 2014 .

[9]  J. Bohdziewicz,et al.  Kinetics and equilibrium of the sorption of bisphenol A by carbon nanotubes from wastewater. , 2013, Water science and technology : a journal of the International Association on Water Pollution Research.

[10]  D. A. Brownson,et al.  Graphene electrochemistry: fundamental concepts through to prominent applications. , 2012, Chemical Society reviews.

[11]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[12]  M. Dehghani,et al.  Adsorption of bisphenol A (BPA) from aqueous solutions by carbon nanotubes: kinetic and equilibrium studies , 2015 .

[13]  S. A. Ghani,et al.  Nafion-MWCNT composite modified graphite paste for the analysis of quercetin in fruits of Acanthopanax sessiliflorus , 2013 .

[14]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[15]  D. A. Brownson,et al.  The electrochemistry of CVD graphene: progress and prospects. , 2012, Physical chemistry chemical physics : PCCP.

[16]  M. Srinivasan,et al.  Photocatalytic degradation of bisphenol-A by nitrogen-doped TiO2 hollow sphere in a vis-LED photoreactor , 2010 .

[17]  L. Rizzo,et al.  Solar light-induced photoelectrocatalytic degradation of bisphenol-A on TiO2/ITO film anode and BDD cathode , 2013 .

[18]  T. Górecki,et al.  Aromatic intermediate formation during oxidative degradation of Bisphenol A by homogeneous sub-stoichiometric Fenton reaction. , 2010, Chemosphere.

[19]  S. Pilehvar,et al.  A biosensor fabricated by incorporation of a redox mediator into a carbon nanotube/nafion composite for tyrosinase immobilization: detection of matairesinol, an endocrine disruptor. , 2013, The Analyst.

[20]  Anthony Papagiannis Intern , 2010, BMJ : British Medical Journal.

[21]  K. Balasubramanian,et al.  Chemically functionalized carbon nanotubes. , 2005, Small.

[22]  W. Sigmund,et al.  Functionalized multiwall carbon nanotube/gold nanoparticle composites. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[23]  C. Brett,et al.  Direct Electrochemical Determination of Glyphosate at Copper Phthalocyanine/Multiwalled Carbon Nanotube Film Electrodes , 2010 .

[24]  I. Cesarino,et al.  Effect of the surface organization with carbon nanotubes on the electrochemical detection of bisphenol A , 2013 .

[25]  S. R. Biaggio,et al.  Electrochemical determination of bisphenol A using a boron-doped diamond electrode , 2012 .

[26]  H. Beitollahi,et al.  Nanostructured Base Electrochemical Sensor for Simultaneous Quantification and Voltammetric Studies of Levodopa and Carbidopa in Pharmaceutical Products and Biological Samples , 2014 .

[27]  Jingjing Xu,et al.  Carbon nanotube/polystyrene composite electrode for microchip electrophoretic determination of rutin and quercetin in Flos Sophorae Immaturus. , 2007, Talanta.

[28]  Xiaojiang Zheng,et al.  Surface-enhanced oxidation and detection of Sunset Yellow and Tartrazine using multi-walled carbon nanotubes film-modified electrode. , 2009, Colloids and surfaces. B, Biointerfaces.

[29]  Kangbing Wu,et al.  Voltammetric determination of Cd2+ based on the bifunctionality of single-walled carbon nanotubes-Nafion film. , 2007, Analytica chimica acta.

[30]  Dan Du,et al.  Amperometric detection of triazophos pesticide using acetylcholinesterase biosensor based on multiwall carbon nanotube–chitosan matrix , 2007 .

[31]  H. Beitollahi,et al.  Electrocatalytic and simultaneous determination of isoproterenol, uric acid and folic acid at molybdenum (VI) complex-carbon nanotube paste electrode , 2011 .

[32]  Huanshun Yin,et al.  Preparation and characteristic of cobalt phthalocyanine modified carbon paste electrode for bisphenol A detection , 2009 .

[33]  M. Behpour,et al.  Simultaneous voltammetric determination of Brilliant Blue and Tartrazine in real samples at the surface of a multi-walled carbon nanotube paste electrode , 2011 .

[34]  A. Akbari,et al.  Electrochemical behavior of a carbon paste electrode modified with 5-amino-3′,4′-dimethyl-biphenyl-2-ol/carbon nanotube and its application for simultaneous determination of isoproterenol, acetaminophen and N-acetylcysteine , 2012 .

[35]  C. Brett,et al.  Glassy carbon electrodes modified by multiwalled carbon nanotubes and poly(neutral red): A comparative study of different brands and application to electrocatalytic ascorbate determination , 2010, Analytical and bioanalytical chemistry.

[36]  J. Raba,et al.  Electrochemical detection of a powerful estrogenic endocrine disruptor: ethinylestradiol in water samples through bioseparation procedure. , 2012, Analytica chimica acta.

[37]  Zebao Rui,et al.  Electrochemical behavior and adsorptive stripping voltammetric determination of quercetin at multi-wall carbon nanotubes-modified paraffin-impregnated graphite disk electrode , 2006 .

[38]  A. Hirsch Functionalization of single-walled carbon nanotubes. , 2002, Angewandte Chemie.

[39]  T. Tang,et al.  Electrochemical detection of DNA damage induced by in situ generated bisphenol A radicals through electro-oxidation , 2010 .