A new methodology to establish upper bounds on open-cell foam homogenized moduli

The methodology to determine upper bounds on homogenized linear elastic moduli of cellular solids, described for the two-dimensional case in Dimitrovová and Faria (1999), is extended to three-dimensional open-cell foams. Besides the upper bounds the methodology provides necessary and sufficient conditions on the optimal media. These conditions are written in terms of generalized internal forces and geometrical parameters. In some cases dependence on internal forces can be replaced by geometrical expressions. In such cases optimality of some medium under consideration can be verified directly from the microstructure, without any additional calculation. Some of the bounds derived in this paper have not yet been published along with a proof of their optimality.

[1]  R. Christensen The hierarchy of microstructures for low density materials , 1995 .

[2]  Marco Avellaneda,et al.  Optimal bounds and microgeometries for elastic two-phase composites , 1987 .

[3]  N. Bakhvalov,et al.  Homogenisation: Averaging Processes in Periodic Media: Mathematical Problems in the Mechanics of Composite Materials , 1989 .

[4]  Ahmed K. Noor,et al.  Continuum Modeling for Repetitive Lattice Structures , 1988 .

[5]  R. Hill Elastic properties of reinforced solids: some theoretical principles , 1963 .

[6]  N. J. Mills,et al.  Analysis of the elastic properties of open-cell foams with tetrakaidecahedral cells , 1997 .

[7]  Zvi Hashin,et al.  The Elastic Moduli of Heterogeneous Materials , 1962 .

[8]  Ajit K. Roy,et al.  Micromechanics model for three-dimensional open-cell foams using a tetrakaidecahedral unit cell and Castigliano's second theorem , 2003 .

[9]  S. Shtrikman,et al.  A variational approach to the theory of the elastic behaviour of multiphase materials , 1963 .

[10]  Zvi Hashin,et al.  THEORY OF COMPOSITE MATERIALS , 1970 .

[11]  Grégoire Allaire,et al.  On optimal microstructures for a plane shape optimization problem , 1999 .

[12]  W. E. Warren,et al.  The Linear Elastic Properties of Open-Cell Foams , 1988 .

[13]  S. G. Lekhnit︠s︡kiĭ Theory of elasticity of an anisotropic body , 1981 .

[14]  O. Sigmund Materials with prescribed constitutive parameters: An inverse homogenization problem , 1994 .

[15]  R. McGregor Structure and Properties , 1954 .

[16]  A. Bensoussan,et al.  Asymptotic analysis for periodic structures , 1979 .

[17]  M. Wolcott Cellular solids: Structure and properties , 1990 .

[18]  O. Sigmund,et al.  Multiphase composites with extremal bulk modulus , 2000 .

[19]  M. M. Neves,et al.  Optimal design of periodic linear elastic microstructures , 2000 .

[20]  Z. Dimitrovová Effective Constitutive Properties of Linear Elastic Cellular Solids With Randomly Oriented Cells , 1999 .

[21]  Z. Dimitrovová,et al.  New Methodology to Establish Bounds on Effective Properties of Cellular Solids , 1999 .

[22]  S. Nemat-Nasser,et al.  Micromechanics: Overall Properties of Heterogeneous Materials , 1993 .

[23]  G. Allaire,et al.  Optimal design for minimum weight and compliance in plane stress using extremal microstructures , 1993 .

[24]  J. Grenestedt Effective elastic behavior of some models for perfect cellular solids , 1999 .

[25]  Z. Hashin Analysis of Composite Materials—A Survey , 1983 .

[26]  W. E. Warren,et al.  Linear Elastic Behavior of a Low-Density Kelvin Foam With Open Cells , 1997 .

[27]  S. Shtrikman,et al.  A variational approach to the theory of the elastic behaviour of polycrystals , 1962 .

[28]  W. E. Warren,et al.  The elastic behavior of low-density cellular plastics , 1994 .

[29]  H. C. Rodrigues,et al.  A material optimization model to approximate energy bounds for cellular materials under multiload conditions , 2003 .