Local envy-freeness in house allocation problems

We study the fair division problem consisting in allocating one item per agent so as to avoid (or minimize) envy, in a setting where only agents connected in a given network may experience envy. In a variant of the problem, agents themselves can be located on the network by the central authority. These problems turn out to be difficult even on very simple graph structures, but we identify several tractable cases. We further provide practical algorithms and experimental insights.

[1]  Youming Qiao,et al.  Networked Fairness in Cake Cutting , 2017, IJCAI.

[2]  Nicholas C. Wormald,et al.  Generating Random Regular Graphs Quickly , 1999, Combinatorics, Probability and Computing.

[3]  Evangelos Markakis,et al.  Comparing Approximate Relaxations of Envy-Freeness , 2018, IJCAI.

[4]  D. Black The theory of committees and elections , 1959 .

[5]  Robert E. Tarjan,et al.  A Linear-Time Algorithm for Testing the Truth of Certain Quantified Boolean Formulas , 1979, Inf. Process. Lett..

[6]  Lars-Gunnar Svensson Strategy-proof allocation of indivisible goods , 1999 .

[7]  Jon M. Kleinberg,et al.  Fair Division via Social Comparison , 2016, AAMAS.

[8]  Marek Karpinski,et al.  Approximation Hardness of Short Symmetric Instances of MAX-3SAT , 2003, Electron. Colloquium Comput. Complex..

[9]  Jörg Rothe,et al.  Minimizing envy and maximizing average Nash social welfare in the allocation of indivisible goods , 2014, Discret. Appl. Math..

[10]  Lin Zhou On a conjecture by gale about one-sided matching problems , 1990 .

[11]  A. Kirman,et al.  Fairness and Envy , 1974 .

[12]  L. Festinger A Theory of Social Comparison Processes , 1954 .

[13]  Zsolt Tuza,et al.  One More Occurrence of Variables Makes Satisfiability Jump From Trivial to NP-Complete , 1993, SIAM J. Comput..

[14]  V. T. Paschos A (Δ/2)-approximation algorithm for the maximum independent set problem , 1992 .

[15]  Laurent Gourvès,et al.  Object Allocation via Swaps along a Social Network , 2017, IJCAI.

[16]  Abdallah Saffidine,et al.  Constrained Swap Dynamics over a Social Network in Distributed Resource Reallocation , 2018, SAGT.

[17]  Michele Flammini,et al.  On Social Envy-Freeness in Multi-Unit Markets , 2018, AAAI.

[18]  Michal Feldman,et al.  The Proportional-Share Allocation Market for Computational Resources , 2009, IEEE Transactions on Parallel and Distributed Systems.

[19]  Vangelis Th. Paschos A (Delta/2)-Approximation Algorithm for the Maximum Independent Set Problem , 1992, Inf. Process. Lett..

[20]  Aric Hagberg,et al.  Exploring Network Structure, Dynamics, and Function using NetworkX , 2008, Proceedings of the Python in Science Conference.

[21]  Yann Chevaleyre,et al.  The Power of Swap Deals in Distributed Resource Allocation , 2015, AAMAS.

[22]  Alexander S. Nesterov,et al.  Minimal Envy and Popular Matchings , 2019, ArXiv.

[23]  Vittorio Bilò,et al.  Almost Envy-Free Allocations with Connected Bundles , 2018, ITCS.

[24]  Yann Chevaleyre,et al.  Distributed fair allocation of indivisible goods , 2017, Artif. Intell..

[25]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[26]  Edith Elkind,et al.  Fair Division of a Graph , 2017, IJCAI.

[27]  Mauro Dell'Amico,et al.  Assignment Problems , 1998, IFIP Congress: Fundamentals - Foundations of Computer Science.

[28]  Ioannis Caragiannis,et al.  On Low-Envy Truthful Allocations , 2009, ADT.

[29]  Klaudia Frankfurter Computers And Intractability A Guide To The Theory Of Np Completeness , 2016 .

[30]  Atila Abdulkadiroglu,et al.  RANDOM SERIAL DICTATORSHIP AND THE CORE FROM RANDOM ENDOWMENTS IN HOUSE ALLOCATION PROBLEMS , 1998 .

[31]  D. Black On the Rationale of Group Decision-making , 1948, Journal of Political Economy.

[32]  D. Foley Resource allocation and the public sector , 1967 .

[33]  Toby Walsh,et al.  Control of Fair Division , 2016, IJCAI.

[34]  Haris Aziz,et al.  Computational aspects of assigning agents to a line , 2017, Math. Soc. Sci..

[35]  Warut Suksompong,et al.  Fairly Allocating Contiguous Blocks of Indivisible Items , 2017, SAGT.

[36]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[37]  Éva Tardos,et al.  Algorithm design , 2005 .

[38]  Peter C. Fishburn,et al.  The probability of the paradox of voting: A computable solution , 1976 .

[39]  Dominik Peters,et al.  Pareto-Optimal Allocation of Indivisible Goods with Connectivity Constraints , 2018, AAAI.

[40]  Elchanan Mossel,et al.  On approximately fair allocations of indivisible goods , 2004, EC '04.

[41]  Rolf Niedermeier,et al.  Envy-Free Allocations Respecting Social Networks , 2018, AAMAS.

[42]  Sylvain Bouveret,et al.  Characterizing conflicts in fair division of indivisible goods using a scale of criteria , 2016, Autonomous Agents and Multi-Agent Systems.

[43]  Lawrence G. Sager Handbook of Computational Social Choice , 2015 .

[44]  Yann Chevaleyre,et al.  Fair Allocation of Indivisible Goods , 2016, Handbook of Computational Social Choice.

[45]  R. Zeckhauser,et al.  The Efficient Allocation of Individuals to Positions , 1979, Journal of Political Economy.

[46]  Giorgio Gambosi,et al.  Complexity and approximation: combinatorial optimization problems and their approximability properties , 1999 .

[47]  Sophie Bade,et al.  Matching with single-peaked preferences , 2019, J. Econ. Theory.

[48]  Ioannis Caragiannis,et al.  Knowledge, Fairness, and Social Constraints , 2018, AAAI.

[49]  Vijay V. Vazirani,et al.  Approximation Algorithms , 2001, Springer Berlin Heidelberg.

[50]  Ariel D. Procaccia,et al.  The Computational Rise and Fall of Fairness , 2014, AAAI.

[51]  Susumu Cato,et al.  Local strict envy-freeness in large economies , 2010, Math. Soc. Sci..

[52]  Yingqian Zhang,et al.  On the Complexity of Efficiency and Envy-Freeness in Fair Division of Indivisible Goods with Additive Preferences , 2009, ADT.

[53]  Michael R. Fellows,et al.  On the parameterized complexity of multiple-interval graph problems , 2009, Theor. Comput. Sci..