INCLINATION-DEPENDENT ACTIVE GALACTIC NUCLEUS FLUX PROFILES FROM STRONG LENSING OF THE KERR SPACETIME

Recent quasar microlensing observations have constrained the X-ray emission sizes of quasars to be about 10 gravitational radii, one order of magnitude smaller than the optical emission sizes. Using a new ray-tracing code for the Kerr space-time, we find that the observed X-ray flux is strongly influenced by the gravity field of the central black hole, even for observers at moderate inclination angles. We calculate inclination-dependent flux profiles of active galactic nuclei in the optical and X-ray bands by combining the Kerr lensing and projection effects for future references. We further study the dependence of the X-ray-to-optical flux ratio on the inclination angle caused by differential lensing distortion of the X-ray and optical emission, assuming several corona geometries. The strong lensing X-ray-to-optical magnification ratio can change by a factor of ~10 for normal quasars in some cases, and another factor of ~10 for broad absorption line quasars (BALs) and obscured quasars. Comparing our results with the observed distributions in normal and broad absorption line quasars, we find that the inclination angle dependence of the magnification ratios can change the X-ray-to-optical flux ratio distributions significantly. In particular, the mean value of the spectrum slope parameter $\alpha_{ox},$ $0.3838\log F_{2 keV}/F_{2500 {\AA}}$, can differ by ~0.1-0.2 between normal and broad absorption line quasars, depending on corona geometries, suggesting larger intrinsic absorptions in BALs.

[1]  P. Schechter,et al.  SIZES AND TEMPERATURE PROFILES OF QUASAR ACCRETION DISKS FROM CHROMATIC MICROLENSING , 2010, 1007.1665.

[2]  D. Vokrouhlický,et al.  In the vicinity of a rotating black hole: a fast numerical code for computing observational effects , 1992 .

[3]  D. Berk,et al.  Soft X-Ray and Ultraviolet Emission Relations in Optically Selected AGN Samples , 2005, astro-ph/0503009.

[4]  F. Muleri,et al.  LIGHT-BENDING SCENARIO FOR ACCRETING BLACK HOLES IN X-RAY POLARIMETRY , 2011, 1102.4247.

[5]  Tsvi Piran,et al.  Polarization features of x-ray radiation emitted near black holes , 1980 .

[6]  N. Shakura,et al.  Resolving the inner structure of QSO discs through fold-caustic-crossing events , 2012, 1203.2656.

[7]  R. Maiolino,et al.  AGN Obscuration and the Unified Model , 2012, 1201.2119.

[8]  G. Meylan,et al.  FURTHER EVIDENCE THAT QUASAR X-RAY EMITTING REGIONS ARE COMPACT: X-RAY AND OPTICAL MICROLENSING IN THE LENSED QUASAR Q J0158–4325 , 2012, 1205.4727.

[9]  E. Baron,et al.  A 3D radiative transfer framework. I. Non-local operator splitting and continuum scattering problems , 2006, astro-ph/0601183.

[10]  The X-Ray-to-Optical Properties of Optically Selected Active Galaxies over Wide Luminosity and Redshift Ranges , 2006, astro-ph/0602407.

[11]  Iron line profiles in strong gravity , 2004, astro-ph/0402199.

[12]  Kinwah Wu,et al.  Radiation transfer of emission lines in curved space-time , 2004, astro-ph/0406401.

[13]  P. Green,et al.  A Chandra Survey of Broad Absorption Line Quasars , 2001, astro-ph/0105258.

[14]  G. V. Kraniotis Precise relativistic orbits in Kerr and Kerr–(anti) de Sitter spacetimes , 2004, gr-qc/0405095.

[15]  C. Cunningham The effects of redshifts and focusing on the spectrum of an accretion disk around a Kerr black hole , 1975 .

[16]  A. Laor Line Profiles from a Disk around a Rotating Black Hole , 1991 .

[17]  E. Baron,et al.  Steps for Solving the Transfer Equation for Arbitrary Flows in Stationary Spacetimes , 2006, astro-ph/0603251.

[18]  A. Fabian,et al.  A light bending model for the X-ray temporal and spectral properties of accreting black holes , 2003, astro-ph/0309064.

[19]  U. Oklahoma,et al.  THE OPTICAL, ULTRAVIOLET, AND X-RAY STRUCTURE OF THE QUASAR HE 0435−1223 , 2011, 1112.0027.

[20]  Brandon Carter,et al.  Axisymmetric Black Hole Has Only Two Degrees of Freedom , 1971 .

[21]  V. Karas,et al.  The flare model for X-ray variability of NGC 4258 , 2011, 1104.4181.

[22]  Laura Maraschi,et al.  X-Ray Spectra from Two-Phase Accretion Disks , 1993 .

[23]  T. O. S. University,et al.  X-Ray and Optical Microlensing in the Lensed Quasar PG 1115+080 , 2008, 0802.1210.

[24]  H. Netzer,et al.  Massive thin accretion discs – I. Calculated spectra , 1989 .

[25]  A. Fabian,et al.  On the influence of resonant absorption on the iron emission-line profiles from accreting black holes , 1999, astro-ph/9912321.

[26]  Guenther Hasinger,et al.  The synthesis of the cosmic X-ray background in the Chandra and XMM-Newton era , 2007 .

[27]  Astrophysics,et al.  THE SIZES OF THE X-RAY AND OPTICAL EMISSION REGIONS OF RXJ 1131–1231 , 2009, The Astrophysical Journal.

[28]  Interpreting the High-Frequency Quasi-periodic Oscillation Power Spectra of Accreting Black Holes , 2004, astro-ph/0407179.

[29]  Juri Poutanen,et al.  The Two-Phase Pair Corona Model for Active Galactic Nuclei and X-ray Binaries: How to Obtain Exact Solutions , 1996 .

[30]  William H. Press,et al.  Numerical recipes , 1990 .

[31]  W. Brandt,et al.  X-Ray Spectroscopy of Quasi-Stellar Objects with Broad Ultraviolet Absorption Lines , 2001, astro-ph/0110579.

[32]  D. Jackson,et al.  Two-dimensional Monte Carlo/Fokker-Planck Simulations of Flares in Accretion Disk Corona Models , 2003 .

[33]  Alexander S. Silbergleit,et al.  “Stable” Quasi-periodic Oscillations and Black Hole Properties from Diskoseismology , 2001, astro-ph/0107168.

[34]  Christopher W. Morgan,et al.  THE QUASAR ACCRETION DISK SIZE–BLACK HOLE MASS RELATION , 2007, 0707.0305.

[35]  P. Green,et al.  Broad Absorption Line Quasars Observed by the ROSAT PSPC , 1995, astro-ph/9512032.

[36]  Frame dragging and bending of light in Kerr and Kerr?(anti) de Sitter spacetimes , 2005, gr-qc/0507056.

[37]  K. Thorne Disk-Accretion onto a Black Hole. II. Evolution of the Hole , 1974 .

[38]  E. Agol,et al.  Magnetic Stress at the Marginally Stable Orbit: Altered Disk Structure, Radiation, and Black Hole Spin Evolution , 1999, astro-ph/9908049.

[39]  C. Gammie,et al.  grmonty: A MONTE CARLO CODE FOR RELATIVISTIC RADIATIVE TRANSPORT , 2009, 0909.0708.

[40]  P. Petrucci,et al.  Evolution of the X-ray spectrum in the flare model of Active Galactic Nuclei , 2002, astro-ph/0212528.

[41]  F. Shankar,et al.  Dependence of the BALQSO fraction on Radio Luminosity , 2008, 0801.4379.

[42]  F. Shankar,et al.  2MASS Reveals a Large Intrinsic Fraction of BALQSOs , 2007, 0704.2882.

[43]  Ronald A. Remillard,et al.  X-Ray Properties of Black-Hole Binaries , 2006, astro-ph/0606352.

[44]  C. Kochanek,et al.  DISCOVERY OF ENERGY-DEPENDENT X-RAY MICROLENSING IN Q2237+0305 , 2011, 1106.6052.

[45]  Guy Perrin,et al.  GYOTO: a new general relativistic ray-tracing code , 2011, 1109.4769.

[46]  Julian H. Krolik,et al.  X-RAY POLARIZATION FROM ACCRETING BLACK HOLES: CORONAL EMISSION , 2009, 0912.0907.

[47]  C. Kochanek,et al.  A STUDY OF GRAVITATIONAL LENS CHROMATICITY USING GROUND-BASED NARROWBAND PHOTOMETRY , 2010, 1008.3399.

[48]  C. Kochanek,et al.  X-RAY MONITORING OF GRAVITATIONAL LENSES WITH CHANDRA , 2012, 1202.5304.

[49]  Robert Antonucci,et al.  Unified models for active galactic nuclei and quasars , 1993 .

[50]  A 3D radiative transfer framework - X. Arbitrary velocity fields in the comoving frame , 2012, 1210.6679.

[51]  Laura Maraschi,et al.  A two-phase model for the X-ray emission from Seyfert galaxies , 1991 .

[52]  D. Pooley,et al.  X-Ray and Optical Flux Anomalies in the Quadruply Lensed QSO 1RXS J1131–1231 , 2005, astro-ph/0509027.

[53]  Nicholas E. White,et al.  X-ray fluorescence from the inner disc in Cygnus X-1 , 1989 .

[54]  C. S. Kochanek,et al.  REVEALING THE STRUCTURE OF AN ACCRETION DISK THROUGH ENERGY-DEPENDENT X-RAY MICROLENSING , 2012, 1204.4480.

[55]  P. Schechter,et al.  A Strong X-Ray Flux Ratio Anomaly in the Quadruply Lensed Quasar PG 1115+080 , 2006, astro-ph/0604152.

[56]  E. Agol,et al.  Polarization from magnetized accretion discs in active galactic nuclei , 1996 .

[57]  E. Baron,et al.  A 3D radiative transfer framework: V. Homologous Flows , 2009, 0903.2486.

[58]  G. Ghisellini,et al.  A MODEL FOR THE X-RAY AND ULTRAVIOLET EMISSION FROM SEYFERT GALAXIES AND GALACTIC BLACK HOLES , 1994, astro-ph/9405059.

[59]  W. Miller,et al.  Line Emission from an Accretion Disk around a Rotating Black Hole: Toward a Measurement of Frame Dragging , 1996, astro-ph/9601106.

[60]  G. Matt,et al.  Polarization signatures of strong gravity in active galactic nuclei accretion discs , 2004, astro-ph/0409356.

[61]  Eric Agol,et al.  A FAST NEW PUBLIC CODE FOR COMPUTING PHOTON ORBITS IN A KERR SPACETIME , 2009, 0903.0620.

[62]  The Spin of the Near-Extreme Kerr Black Hole GRS 1915+105 , 2006, astro-ph/0606076.

[63]  A. Fabian,et al.  The iron line in MCG—6-30-15 from XMM—Newton: evidence for gravitational light bending? , 2003, astro-ph/0301588.

[64]  C. Kochanek Quantitative Interpretation of Quasar Microlensing Light Curves , 2003, astro-ph/0307422.

[65]  F. Shankar,et al.  THE INTRINSIC FRACTIONS AND RADIO PROPERTIES OF LOW-IONIZATION BROAD ABSORPTION LINE QUASARS , 2010, 1004.0700.

[66]  C. Kochanek,et al.  X-RAY MICROLENSING IN RXJ1131–1231 AND HE1104–1805 , 2008, 0805.4492.

[67]  F. Shankar,et al.  Dependence of the Broad Absorption Line Quasar Fraction on Radio Luminosity , 2008 .

[68]  J. Krolik Magnetized Accretion inside the Marginally Stable Orbit around a Black Hole , 1999, astro-ph/9902267.

[69]  Christopher S. Kochanek,et al.  The Spatial Structure of an Accretion Disk , 2007, 0707.0003.

[70]  R. Wagoner,et al.  ‘Stable’ QPOs and Black Hole Properties from Diskoseismology , 2022 .

[71]  William H. Press,et al.  Rotating Black Holes: Locally Nonrotating Frames, Energy Extraction, and Scalar Synchrotron Radiation , 1972 .

[72]  C. Lammerzahl,et al.  Analytical solution of the geodesic equation in Kerr-(anti) de Sitter space-times , 2010, 1009.6117.

[73]  M. Salvato,et al.  The X-ray to optical-UV luminosity ratio of X-ray selected type 1 AGN in XMM-COSMOS , 2009, 0912.4166.

[74]  Ramesh Narayan,et al.  INFERRING THE INCLINATION OF A BLACK HOLE ACCRETION DISK FROM OBSERVATIONS OF ITS POLARIZED CONTINUUM RADIATION , 2008, 0809.0866.

[75]  Julian H. Krolik,et al.  X-RAY POLARIZATION FROM ACCRETING BLACK HOLES: THE THERMAL STATE , 2009, 0902.3982.

[76]  E. Oliva,et al.  Dust covering factor, silicate emission, and star formation in luminous QSOs , 2007, 0704.1559.

[77]  C. Done,et al.  Extreme gravitational lensing near rotating black holes , 2004, astro-ph/0411339.

[78]  H. Kunieda,et al.  Gravitationally redshifted emission implying an accretion disk and massive black hole in the active galaxy MCG–6–30–15 , 1995, Nature.

[79]  K. Schawinski,et al.  OPTICAL SPECTROSCOPY OF X-RAY SOURCES IN THE EXTENDED CHANDRA DEEP FIELD SOUTH , 2008, 0810.3917.

[80]  Guenther Hasinger,et al.  Absorption properties and evolution of active galactic nuclei , 2008 .

[81]  Chris Simpson,et al.  The luminosity dependence of the type 1 active galactic nucleus fraction , 2005 .

[82]  W. N. Brandt,et al.  On the Nature of Soft X-Ray Weak Quasi-stellar Objects , 1999, astro-ph/9908016.

[83]  P. Laurent,et al.  The Converging Inflow Spectrum Is an Intrinsic Signature for a Black Hole: Monte Carlo Simulations of Comptonization on Free-falling Electrons , 1999 .

[84]  A. Orr,et al.  Non-thermal emission from AGN coronae , 2005, astro-ph/0503173.

[85]  A. Lasenby,et al.  The lack of variability of the iron line in MCG–6‐30‐15: general relativistic effects , 2003, astro-ph/0307163.

[86]  Heidelberg,et al.  Microlensing variability in the gravitationally lensed quasar QSO 2237+0305 ≡ the Einstein Cross I. Spectrophotometric monitoring with the VLT , 2007, 0709.2828.

[87]  Subrahmanyan Chandrasekhar,et al.  The Mathematical Theory of Black Holes , 1983 .

[88]  Czech Republic,et al.  Thermal disc emission from a rotating black hole: X-ray polarization signatures , 2008, 0809.0418.

[89]  Robert H. Boyer,et al.  Maximal Analytic Extension of the Kerr Metric , 1967 .

[90]  M. Gierliński,et al.  A periodicity of ∼1 hour in X-ray emission from the active galaxy RE J1034+396 , 2008, Nature.

[91]  J. Halpern,et al.  Structure of line-emitting accretion disks in active galactic nuclei - Arp 102B , 1989 .

[92]  N. Schurch,et al.  RE J1034+396: the origin of the soft X-ray excess and quasi-periodic oscillation , 2008, 0807.4847.