Zero and controllable thermal expansion in

HfMgMo W x O12 with , 1.0, 1.5, 2.0, and 2.5 are developed with a simple solid state method. With increasing the content of W, solid solutions of HfMgMo W x O12 crystallize in an orthorhombic structure for and a monoclinic structure for . A near-zero thermal expansion (ZTE) is realized for HfMgMo W O12 and negative coefficients of thermal expansion (NCTE) are achieved for other compositions with different values. The ZTE and variation of NCTE are attributed to the difference in electronegativity between W and Mo and incorporation of a different amount of W, which cause variable distortion of the octahedra and softening of the MoO4 tetrahedra, and hence an enhanced NCTE in the a- and c-axis and reduced CTE in the b-axis as revealed by Raman spectroscopy and x-ray diffraction.

[1]  Xiansheng Liu,et al.  A novel material of HfScMo2VO12 with negative thermal expansion and intense white-light emission , 2016 .

[2]  Xiansheng Liu,et al.  Negative thermal expansion and broad band photoluminescence in a novel material of ZrScMo2VO12 , 2016, Scientific Reports.

[3]  J. Deng,et al.  Negative thermal expansion in functional materials: controllable thermal expansion by chemical modifications. , 2015, Chemical Society reviews.

[4]  Wenbo Song,et al.  Phase transition, crystal water and low thermal expansion behavior of Al2−2x(ZrMg)xW3O12·n(H2O) , 2014 .

[5]  J. Deng,et al.  Zero thermal expansion and ferromagnetism in cubic Sc(1-x)M(x)F3 (M = Ga, Fe) over a wide temperature range. , 2014, Journal of the American Chemical Society.

[6]  Lihua Chu,et al.  Study of structure of Mn3Cu0.5Ge0.5N/Cu composite with nearly zero thermal expansion behavior around room temperature , 2014 .

[7]  Xiansheng Liu,et al.  Interaction of crystal water with the building block in Y2Mo3O12 and the effect of Ce3+ doping. , 2014, Physical chemistry chemical physics : PCCP.

[8]  L. Barbour,et al.  A combined stretching-tilting mechanism produces negative, zero and positive linear thermal expansion in a semi-flexible Cd(II)-MOF. , 2014, Chemical communications.

[9]  P. Juhás,et al.  Local vibrations and negative thermal expansion in ZrW2O8. , 2014, Physical review letters.

[10]  Li Zhi-Yuan,et al.  A Negative Thermal Expansion Material of ZrMgMo3O12 , 2013 .

[11]  J. Deng,et al.  Effectively control negative thermal expansion of single-phase ferroelectrics of PbTiO3-(Bi,La)FeO3 over a giant range , 2013, Scientific Reports.

[12]  Michel B. Johnson,et al.  Low-temperature investigations of the open-framework material HfMgMo3O12 , 2012 .

[13]  E. Liang,et al.  Structures, Phase Transition, and Crystal Water of Fe2–xYxMo3O12 , 2011 .

[14]  J. Attfield,et al.  Colossal negative thermal expansion in BiNiO3 induced by intermetallic charge transfer , 2011, Nature communications.

[15]  J. Deng,et al.  Phase transformation and negative thermal expansion in TaVO5. , 2011, Inorganic chemistry.

[16]  C. Lind,et al.  Novel Materials through Non-Hydrolytic Sol-Gel Processing: Negative Thermal Expansion Oxides and Beyond , 2010, Materials.

[17]  Dongfeng Chen,et al.  Thermal expansion properties of Ln2−xCrxMo3O12 (Ln = Er and Y) , 2009 .

[18]  M. Azuma,et al.  Temperature-induced A–B intersite charge transfer in an A-site-ordered LaCu3Fe4O12 perovskite , 2009, Nature.

[19]  F. Ferreira,et al.  Low positive thermal expansion in HfMgMo3O12 , 2008 .

[20]  M. Green,et al.  Polymorphism in the negative thermal expansion material magnesium hafnium tungstate , 2008 .

[21]  A. Omote,et al.  Negative Thermal Expansion in (HfMg)(WO4)3 , 2004 .

[22]  John S. O. Evans,et al.  Negative Thermal Expansion from 0.3 to 1050 Kelvin in ZrW2O8 , 1996, Science.