Targeting the forgotten transglycosylases.

[1]  G. Huber,et al.  Moenomycin, an inhibitor of cell wall synthesis. , 1968, Biochemical and biophysical research communications.

[2]  S. Hentschel,et al.  [Staphylococcus aureus in poultry--biochemical characteristics, antibiotic resistance and phage pattern (author's transl)]. , 1979, Zentralblatt fur Bakteriologie, Parasitenkunde, Infektionskrankheiten und Hygiene. Erste Abteilung Originale. Reihe B: Hygiene, Betriebshygiene, praventive Medizin.

[3]  S. Tamaki,et al.  Functional biosynthesis of cell wall peptidoglycan by polymorphic bifunctional polypeptides. Penicillin-binding protein 1Bs of Escherichia coli with activities of transglycosylase and transpeptidase. , 1984, The Journal of biological chemistry.

[4]  B. Spratt,et al.  Lysis of Escherichia coli by beta-lactam antibiotics: deletion analysis of the role of penicillin-binding proteins 1A and 1B. , 1985, Journal of general microbiology.

[5]  J. van Heijenoort,et al.  Effects of moenomycin on Escherichia coli. , 1987, Journal of general microbiology.

[6]  Frithjof Kruggel,et al.  Moenomycin a: Minimum structural requirements for biological activity , 1987 .

[7]  W. Dietrich,et al.  Synthesis of two structural analogues of the smallest antibiotically active degradation product of moenomycin a , 1988 .

[8]  J. Heijenoort,et al.  Moenomycin A: A structural revision and new structure-activity reactions , 1990 .

[9]  K. Lackey,et al.  Synthesis of compounds designed to inhibit bacterial cell wall transglycosylation , 1990 .

[10]  J. Heijenoort,et al.  The first enzymatic degradation products of the antibiotic moenomycin A. , 1992 .

[11]  J. Heijenoort,et al.  Structures of some moenomycin antibiotics - inhibitors of peptidoglycan biosynthesis , 1993 .

[12]  M. Arthur,et al.  Genetics and mechanisms of glycopeptide resistance in enterococci , 1993, Antimicrobial Agents and Chemotherapy.

[13]  P. Welzel,et al.  Moenomycin A - Structure-activity relations synthesis of the D-galacturonamide analogue of the smallest antibiotically active degradation product of moenomycin A , 1993 .

[14]  J. Heijenoort,et al.  The first synthesis of a moenomycin-type transglycosylase inhibitor , 1993 .

[15]  C. Walsh,et al.  Vancomycin resistance: decoding the molecular logic. , 1993, Science.

[16]  J. Heijenoort,et al.  Moenomycin A: reactions at the lipid part. New structure-activity relations , 1994 .

[17]  R. Southgate,et al.  Synthesis of derivatives of muramic acid and C-1 homologated α-D-glucose as potential inhibitors of bacterial transglycosylase , 1995 .

[18]  B. M. Pinto,et al.  Application of two-dimensional NMR spectroscopy and molecular dynamics simulations to the conformational analysis of oligosaccharides corresponding to the cell-wall polysaccharide of Streptococcus group A. , 1995, International journal of biological macromolecules.

[19]  J. Heijenoort,et al.  Introduction of a terminal hydroxy group into the lipid part of a moenomycin-type transglycosylase inhibitor suppresses antibiotic activity , 1995 .

[20]  C. Walsh,et al.  Bacterial resistance to vancomycin: five genes and one missing hydrogen bond tell the story. , 1996, Chemistry & biology.

[21]  T. Nicas,et al.  Structural modifications of glycopeptide antibiotics , 1997, Medicinal research reviews.

[22]  H. Sahl,et al.  The lantibiotic mersacidin inhibits peptidoglycan biosynthesis at the level of transglycosylation. , 1997, European journal of biochemistry.

[23]  J. Heijenoort,et al.  A chemoenzymatic approach towards moenomycin structural analogues , 1997 .

[24]  J. Heijenoort,et al.  Synthesis of a trisaccharide analogue of moenomycin A12 Implications of new moenomycin structure-activity relationships , 1997 .

[25]  D. Jendrossek,et al.  A putative monofunctional glycosyltransferase is expressed in Ralstonia eutropha , 1997, Journal of bacteriology.

[26]  H. Sahl,et al.  Role of lipid‐bound peptidoglycan precursors in the formation of pores by nisin, epidermin and other lantibiotics , 1998, Molecular microbiology.

[27]  T. Vernet,et al.  Identification, Purification, and Characterization of Transpeptidase and Glycosyltransferase Domains of Streptococcus pneumoniae Penicillin-Binding Protein 1a , 1998, Journal of bacteriology.

[28]  J. Ghuysen,et al.  Multimodular Penicillin-Binding Proteins: An Enigmatic Family of Orthologs and Paralogs , 1998, Microbiology and Molecular Biology Reviews.

[29]  W. Aretz,et al.  Exploratory investigations into the biosynthesis of the antibiotic moenomycin A , 1998 .

[30]  H. Sahl,et al.  The Lantibiotic Mersacidin Inhibits Peptidoglycan Synthesis by Targeting Lipid II , 1998, Antimicrobial Agents and Chemotherapy.

[31]  J. Ghuysen,et al.  The catalytic, glycosyl transferase and acyl transferase modules of the cell wall peptidoglycan‐polymerizing penicillin‐binding protein 1b of Escherichia coli , 1999, Molecular microbiology.

[32]  R. Lurz,et al.  Mutational Analysis of the Streptococcus pneumoniae Bimodular Class A Penicillin-Binding Proteins , 1999, Journal of bacteriology.

[33]  J. Heijenoort,et al.  Acceptor site recognition of transglycosylase inhibitors a β-D-glucopyranosyl-(1→2)-α-D-glucopyranuronamide-derived moenomycin analogue , 1999 .

[34]  Zhong Chen,et al.  Vancomycin derivatives that inhibit peptidoglycan biosynthesis without binding D-Ala-D-Ala. , 1999, Science.

[35]  J. Heijenoort,et al.  Synthesis and transglycosylase-inhibiting properties of a disaccharide analogue of moenomycin A lacking substitution at C-4 of unit F , 1999 .

[36]  Peter Welzel,et al.  Moenomycin A: The role of the methyl group in the moenuronamide unit and a general discussion of structure-activity relationships , 1999 .

[37]  T. Bugg 3.10 – Bacterial Peptidoglycan Biosynthesis and its Inhibition , 1999 .

[38]  F. Chi,et al.  Discovery of novel disaccharide antibacterial agents using a combinatorial library approach. , 1999, Journal of medicinal chemistry.

[39]  A. Branstrom,et al.  Chlorobiphenyl-desleucyl-vancomycin inhibits the transglycosylation process required for peptidoglycan synthesis in bacteria in the absence of dipeptide binding. , 2000, FEMS microbiology letters.

[40]  K. Richter,et al.  Some selective reactions of moenomycin A. , 2000, Bioorganic & medicinal chemistry letters.

[41]  F. Haesebrouck,et al.  Influence of different medium components on the in vitro activity of the growth-promoting antibiotic flavomycin against enterococci. , 2000, The Journal of antimicrobial chemotherapy.

[42]  R C Goldman,et al.  Inhibition of transglycosylation involved in bacterial peptidoglycan synthesis. , 2000, Current medicinal chemistry.

[43]  Peter Welzel,et al.  Moenomycin analogues with long-chain amine lipid parts from reductive aminations , 2001 .

[44]  J. Markwalder,et al.  Lipid II: total synthesis of the bacterial cell wall precursor and utilization as a substrate for glycosyltransfer and transpeptidation by penicillin binding protein (PBP) 1b of Escherichia coli. , 2001, Journal of the American Chemical Society.

[45]  D. Kahne,et al.  Hybrid glycopeptide antibiotics. , 2001, Journal of the American Chemical Society.

[46]  Patrick Butaye,et al.  Differences in Antibiotic Resistance Patterns ofEnterococcus faecalis and Enterococcus faeciumStrains Isolated from Farm and Pet Animals , 2001, Antimicrobial Agents and Chemotherapy.

[47]  Q. Wang,et al.  Identification and Characterization of a Monofunctional Glycosyltransferase from Staphylococcus aureus , 2001, Journal of bacteriology.

[48]  I. Pelczer,et al.  A new structure for the substrate-binding antibiotic ramoplanin. , 2001, Journal of the American Chemical Society.

[49]  J. Heijenoort Formation of the glycan chains in the synthesis of bacterial peptidoglycan , 2001 .

[50]  S. Vogel,et al.  Moenomycin analogues with modified lipid side chains from indium-mediated Barbier-type reactions , 2001 .

[51]  P. Griffin,et al.  Direct interaction of a vancomycin derivative with bacterial enzymes involved in cell wall biosynthesis. , 2001, Chemistry & biology.

[52]  R. Kruger,et al.  Chemistry and biology of the ramoplanin family of peptide antibiotics. , 2002, Biopolymers.

[53]  Robert Kaptein,et al.  Mapping the targeted membrane pore formation mechanism by solution NMR: the nisin Z and lipid II interaction in SDS micelles. , 2002, Biochemistry.

[54]  M. Findeisen,et al.  Synthesis of analogues of the 2-O-alkyl glycerate part of the moenomycins , 2002 .

[55]  E. Stobberingh,et al.  Effects of Flavophospholipol on Resistance in Fecal Escherichia coli and Enterococci of Fattening P , 2002, Antimicrobial Agents and Chemotherapy.

[56]  B. de Kruijff,et al.  Lipid II induces a transmembrane orientation of the pore-forming peptide lantibiotic nisin. , 2002, Biochemistry.

[57]  A. Wand,et al.  Functional analysis of the lipoglycodepsipeptide antibiotic ramoplanin. , 2002, Chemistry & biology.

[58]  A. Wand,et al.  Complexation of peptidoglycan intermediates by the lipoglycodepsipeptide antibiotic ramoplanin: Minimal structural requirements for intermolecular complexation and fibril formation , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[59]  J. Ayala,et al.  A Surface Plasmon Resonance Analysis of the Interaction between the Antibiotic Moenomycin A and Penicillin‐Binding Protein 1b , 2002 .

[60]  M. VanNieuwenhze,et al.  The first total synthesis of lipid II: the final monomeric intermediate in bacterial cell wall biosynthesis. , 2002, Journal of the American Chemical Society.

[61]  R. Williamson,et al.  Mannopeptimycins, novel antibacterial glycopeptides from Streptomyces hygroscopicus, LL-AC98. , 2002, Journal of the American Chemical Society.

[62]  Nancy Torres,et al.  Synthesis and evaluation of ether and halogenated derivatives of mannopeptimycin glycopeptide antibiotics. , 2003, Bioorganic & medicinal chemistry letters.

[63]  D. Popham,et al.  Peptidoglycan Synthesis in the Absence of Class A Penicillin-Binding Proteins in Bacillus subtilis , 2003, Journal of bacteriology.

[64]  S. Walker,et al.  Ramoplanin inhibits bacterial transglycosylases by binding as a dimer to lipid II. , 2003, Journal of the American Chemical Society.

[65]  T. Vernet,et al.  The Glycosyltransferase Domain of Penicillin-Binding Protein 2a from Streptococcus pneumoniae Catalyzes the Polymerization of Murein Glycan Chains , 2003, Journal of bacteriology.

[66]  T. Vernet,et al.  Functional Characterization of Penicillin-Binding Protein 1b from Streptococcus pneumoniae , 2003, Journal of bacteriology.

[67]  M. Preobrazhenskaya,et al.  Role of the glycopeptide framework in the antibacterial activity of hydrophobic derivatives of glycopeptide antibiotics. , 2003, Journal of medicinal chemistry.

[68]  J. Judice,et al.  Semi-synthetic glycopeptide antibacterials. , 2003, Bioorganic & medicinal chemistry letters.

[69]  T. Nicas,et al.  Mechanism of action of oritavancin and related glycopeptide antibiotics. , 2003, FEMS microbiology reviews.

[70]  D. Volke,et al.  Studies on the interaction of the antibiotic moenomycin A with the enzyme penicillin-binding protein 1b. , 2003, Bioorganic & medicinal chemistry.

[71]  S. Walker,et al.  Vancomycin analogues active against vanA-resistant strains inhibit bacterial transglycosylase without binding substrate , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[72]  P. Bradford,et al.  Mannopeptimycins, New Cyclic Glycopeptide Antibiotics Produced by Streptomyces hygroscopicus LL-AC98: Antibacterial and Mechanistic Activities , 2003, Antimicrobial Agents and Chemotherapy.

[73]  R. Kaptein,et al.  NMR Study of Mersacidin and Lipid II Interaction in Dodecylphosphocholine Micelles , 2003, The Journal of Biological Chemistry.

[74]  A. Heck,et al.  Lipid II Is an Intrinsic Component of the Pore Induced by Nisin in Bacterial Membranes* , 2003, Journal of Biological Chemistry.

[75]  Nancy Torres,et al.  Novel ether derivatives of mannopeptimycin glycopeptide antibiotic. , 2003, Bioorganic & medicinal chemistry letters.

[76]  R. Shandil,et al.  High-Throughput Screen for Inhibitors of Transglycosylase and/or Transpeptidase Activities of Escherichia coli Penicillin Binding Protein 1b , 2004, Antimicrobial Agents and Chemotherapy.

[77]  J. Vederas,et al.  Synthesis of mono- and disaccharide analogs of moenomycin and lipid II for inhibition of transglycosylase activity of penicillin-binding protein 1b. , 2004, Bioorganic & medicinal chemistry.

[78]  J. Vederas,et al.  Structural characterization of lacticin 3147, a two-peptide lantibiotic with synergistic activity. , 2004, Biochemistry.

[79]  P. Bradford,et al.  Mechanism of Action of the Mannopeptimycins, a Novel Class of Glycopeptide Antibiotics Active against Vancomycin-Resistant Gram-Positive Bacteria , 2004, Antimicrobial Agents and Chemotherapy.

[80]  D. Boger,et al.  Dissecting ramoplanin: mechanistic analysis of synthetic ramoplanin analogues as a guide to the design of improved antibiotics. , 2004, Journal of the American Chemical Society.

[81]  F. Bambeke Glycopeptides in clinical development: pharmacological profile and clinical perspectives. , 2004 .

[82]  S. Lang,et al.  Hydrophobic acetal and ketal derivatives of mannopeptimycin-alpha and desmethylhexahydromannopeptimycin-alpha: semisynthetic glycopeptides with potent activity against Gram-positive bacteria. , 2004, Journal of medicinal chemistry.

[83]  B. de Kruijff,et al.  Assembly and stability of nisin-lipid II pores. , 2004, Biochemistry.

[84]  Hai-yin He Mannopeptimycins, a novel class of glycopeptide antibiotics active against gram-positive bacteria , 2005, Applied Microbiology and Biotechnology.

[85]  In Vivo Efficacy and Pharmacokinetics of AC98-6446, a Novel Cyclic Glycopeptide, in Experimental Infection Models , 2004, Antimicrobial Agents and Chemotherapy.

[86]  M. Findeisen,et al.  Studies on the Synthesis of Di- and Trisaccharide Analogues of Moenomycin A. Modifications in Unit E and in the Lipid Part , 2004 .

[87]  M. Findeisen,et al.  Studies on the Synthesis of Trisaccharide Analogues of the Antibiotic Moenomycin A , 2004 .

[88]  F. Koehn,et al.  Mannopeptimycin esters and carbonates, potent antibiotic agents against drug-resistant bacteria. , 2004, Bioorganic & medicinal chemistry letters.

[89]  D. Guay Oritavancin and Tigecycline: Investigational Antimicrobials for Multidrug‐Resistant Bacteria , 2004, Pharmacotherapy.

[90]  D. Mengin-Lecreulx,et al.  Role of Class A Penicillin-Binding Proteins in PBP5-Mediated β-Lactam Resistance in Enterococcus faecalis , 2004, Journal of bacteriology.

[91]  P. Bradford,et al.  Comparative In Vitro Activities of AC98-6446, a Novel Semisynthetic Glycopeptide Derivative of the Natural Product Mannopeptimycin α, and Other Antimicrobial Agents against Gram-Positive Clinical Isolates , 2004, Antimicrobial Agents and Chemotherapy.

[92]  S. Walker,et al.  Differential inhibition of Staphylococcus aureus PBP2 by glycopeptide antibiotics. , 2005, Journal of the American Chemical Society.

[93]  Otto Dideberg,et al.  Active site restructuring regulates ligand recognition in class A penicillin-binding proteins. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[94]  C. Walsh,et al.  Glycopeptide and lipoglycopeptide antibiotics. , 2005, Chemical reviews.

[95]  R. Jones,et al.  Antimicrobial activity of dalbavancin tested against Gram-positive clinical isolates from Latin American medical centres. , 2005, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.

[96]  J. Barrett Recent developments in glycopeptide antibacterials. , 2005, Current opinion in investigational drugs.

[97]  S. Walker,et al.  Kinetic Characterization of the Glycosyltransferase Module of Staphylococcus aureus PBP2 , 2005, Journal of bacteriology.

[98]  D. Boger,et al.  Chemistry and biology of ramoplanin: a lipoglycodepsipeptide with potent antibiotic activity. , 2005, Chemical reviews.