Different mechanism to explain the 1∕f noise in n- and p-SOI-MOS transistors fabricated on (110) and (100) silicon-oriented wafers

The investigation of the low frequency noise in p- and n-channel semiconductor-on-insulator–metal oxide semiconductor transistors fabricated on (100) and (110) silicon-oriented wafers using high advanced processes has been carried out. While for both orientations the 1∕f noise in the n-channel transistors can be explained through the ΔN formalism, the p-channel ones seem to follow the Hooge model. In addition, the new orientation presents a noise level higher than the conventional one. Furthermore, the authors showed that when there is a gap of one decade between the Si(100) and Si(110) p-channel transistors, this one has been reduced to a factor of 2 in the case of the n-channel ones. Finally, by combining the highly advanced microwave-excited high-density plasma oxidation process with the alkali-free five-step cleaning process, it has been possible to fabricate on both surfaces a very high quality oxide with a very low density of traps.

[1]  K. Kotani,et al.  1/f noise suppression of pMOSFETs fabricated on Si(100) and Si(110) using an alkali-free cleaning process , 2006, IEEE Transactions on Electron Devices.

[2]  D. Rigaud,et al.  1/f noise in MODFETs at low drain bias , 1990 .

[3]  Hsiang,et al.  Surface mobility fluctuations in metal-oxide-semiconductor field-effect transistors. , 1987, Physical review. B, Condensed matter.

[4]  Gérard Ghibaudo,et al.  Electrical noise and RTS fluctuations in advanced CMOS devices , 2002, Microelectron. Reliab..

[5]  Eddy Simoen,et al.  Impact of gate oxide nitridation process on 1/f noise in 0.18 mum CMOS , 2001, Microelectron. Reliab..

[6]  Tadahiro Ohmi,et al.  A Technology for Reducing Flicker Noise for ULSI Applications , 2003 .

[7]  A. Abidi,et al.  Flicker noise in CMOS transistors from subthreshold to strong inversion at various temperatures , 1994 .

[8]  Tadahiro Ohmi,et al.  New era of silicon technologies due to radical reaction based semiconductor manufacturing , 2006 .

[9]  Das Subrata,et al.  連続イオン層吸着及び反応(SILAR)法によるSnS薄膜の作製 , 2008 .

[10]  K. Romanjek,et al.  Low frequency noise characterization and modelling in ultrathin oxide MOSFETs , 2006 .

[11]  E. P. Vandamme,et al.  Critical discussion on unified 1/f noise models for MOSFETs , 2000 .

[12]  F. Balestra,et al.  Shrinking from 0.25 down to 0.12 μm SOI CMOS technology node: a contribution to low-frequency noise in partially depleted N-MOSFETs , 2003 .

[13]  B. Rahman,et al.  Analysis of polarisation rotation in cascaded optical waveguide bends , 2002 .

[14]  Gerard Ghibaudo,et al.  Low frequency noise characterization of 0.18 μm Si CMOS transistors , 1998 .

[15]  F. Hooge 1/ƒ noise is no surface effect , 1969 .

[16]  Cor Claeys,et al.  Reliability aspects of the low-frequency noise behaviour of submicron CMOS technologies , 1999 .

[17]  Mikael Östling,et al.  Impact of strain and channel orientation on the low-frequency noise performance of Si n- and pMOSFETs , 2007 .

[18]  S. Takagi,et al.  On the Universality of Inversion Layer Mobility in Si Mosfet's: Part 11-effects of Surface Orientation , 1994 .

[19]  Carmine Ciofi,et al.  A new measurement method of MOS transistor parameters , 1990 .

[20]  G. Ghibaudo,et al.  Low-frequency noise characterization of n- and p-MOSFET's with ultrathin oxynitride gate films , 1996, IEEE Electron Device Letters.

[21]  Gerard Ghibaudo,et al.  New method for the extraction of MOSFET parameters , 1988 .

[22]  Kyu-Hwan Shim,et al.  The low-frequency noise characteristics of p-type metal-oxide-semiconductor field effect transistors with a strained-Si0.88Ge0.12 channel grown on bulk Si and a PD-SOI substrate , 2008 .

[23]  T. Ohmi,et al.  Highly reliable ultrathin silicon oxide film formation at low temperature by oxygen radical generated in high-density krypton plasma , 2001 .

[24]  T. Ohmi,et al.  Very High Carrier Mobility for High-Performance CMOS on a Si(110) Surface , 2007, IEEE Transactions on Electron Devices.

[25]  C. Hu,et al.  A unified model for the flicker noise in metal-oxide-semiconductor field-effect transistors , 1990 .

[26]  Sorin Cristoloveanu,et al.  Frontiers of silicon-on-insulator , 2003 .

[27]  John H. Scofield,et al.  Reconciliation of different gate-voltage dependencies of 1/f noise in n-MOS and p-MOS transistors , 1994 .

[28]  Charles G. Sodini,et al.  A 1/f noise technique to extract the oxide trap density near the conduction band edge of silicon , 1989 .

[29]  L.K.J. Vandamme,et al.  1/f noise in MOS devices, mobility or number fluctuations? , 1994 .

[30]  R. Kuroda,et al.  Revolutional Progress of Silicon Technologies Exhibiting Very High Speed Performance Over a 50-GHz Clock Rate , 2007, IEEE Transactions on Electron Devices.

[31]  Tadahiro Ohmi,et al.  Impact of Improved High-Performance Si(110)-Oriented Metal–Oxide–Semiconductor Field-Effect Transistors Using Accumulation-Mode Fully Depleted Silicon-on-Insulator Devices , 2006 .

[32]  Gerard Ghibaudo,et al.  Improved Analysis of Low Frequency Noise in Field‐Effect MOS Transistors , 1991 .

[33]  Hisashi Hara,et al.  Mobility Anisotropy of Electrons in Inversion Layers on Oxidized Silicon Surfaces , 1971 .

[34]  Tadahiro Ohmi,et al.  Total Room Temperature Wet Cleaning for Si Substrate Surface , 1996 .

[35]  H. Mikoshiba,et al.  1/f noise in n-channel silicon-gate MOS transistors , 1982, IEEE Transactions on Electron Devices.

[36]  Eddy Simoen,et al.  Low-frequency noise in silicon-on-insulator devices and technologies , 2007 .

[37]  N. Sugiyama,et al.  [110]-surface strained-SOI CMOS devices , 2005, IEEE Transactions on Electron Devices.

[38]  F. N. Hooge,et al.  1/f noise , 1976 .