Silver Solid Amalgam Electrode as a Tool for Monitoring the Electrochemical Reduction of Hydroxocobalamin

The voltammetric behavior of hydroxocobalamin (OH-Cbl), one form of vitamin B12, has been studied using two modifications of silver solid amalgam electrode: polished (p-AgSAE) and mercury meniscus modified (m-AgSAE). All results were compared with these achieved using hanging mercury drop electrode (HMDE). Various voltammetric methods, like cyclic voltammetry, DC voltammetry, differential pulse voltammetry and elimination voltammetry with linear scan, were applied to investigate the electrochemical behavior of OH-Cbl. Working conditions of differential pulse voltammetry were found and the achieved limits of detection (LD=1.5 nmol L−1 (m-AgSAE) and 3.3 nmol L−1 (p-AgSAE)) proved high sensitivity. The applicability of the proposed method was verified by analysis of vitamin preparation.

[1]  T. Navrátil,et al.  Voltammetric determination of leucovorin using silver solid amalgam electrode , 2012 .

[2]  Renáta Šelešovská,et al.  Voltammetric determination of folic Acid using liquid mercury free silver amalgam electrode. , 2011, Acta Chimica Slovenica.

[3]  R. Rosselló-Móra,et al.  Determination of cobalamins (hydroxo-, cyano-, adenosyl- and methyl-cobalamins) in seawater using reversed-phase liquid chromatography with diode-array detection. , 2011, Analytica Chimica Acta.

[4]  B. Yosypchuk,et al.  Voltammetric determination of the herbicide Bifenox in drinking and river water using a silver solid amalgam electrode , 2011 .

[5]  T. Navrátil,et al.  Electrochemical behavior of folic acid on mercury meniscus modified silver solid amalgam electrode , 2011 .

[6]  T. Navrátil,et al.  Voltammetric Behavior of Methotrexate Using Mercury Meniscus Modified Silver Solid Amalgam Electrode , 2011 .

[7]  J. Barek,et al.  Voltammetric Determination of Selected Nitro Compounds at a Polished Silver Solid Amalgam Composite Electrode , 2011 .

[8]  J. Barek,et al.  Voltammetric Determination of Genotoxic Nitro Derivatives of Fluorene and 9‐Fluorenone Using a Mercury Meniscus Modified Silver Solid Amalgam Electrode , 2010 .

[9]  L. Trnková,et al.  Elimination Procedure as a Novel and Promising Mathematical Approach in Voltammetric Methods , 2010 .

[10]  L. Trnková,et al.  Elimination Voltammetry of Miniaturized Mercury Drop Electrodes , 2010 .

[11]  M. Fojta,et al.  A label-free electrochemical test for DNA-binding activities of tumor suppressor protein p53 using immunoprecipitation at magnetic beads. , 2010, Analytica chimica acta.

[12]  B. Yosypchuk,et al.  Voltammetric Determination of Nitronaphthalenes at a Silver Solid Amalgam Electrode , 2009 .

[13]  Karolina Pecková,et al.  The use of silver solid amalgam electrode for voltammetric and amperometric determination of nitroquinolines , 2009 .

[14]  V. Bencko,et al.  Voltammetric and amperometric determination of N-nitroso antineoplastic drugs at mercury and amalgam electrodes , 2009 .

[15]  P. Szefer,et al.  Reversed-phase high-performance liquid chromatography method with coulometric electrochemical and ultraviolet detection for the quantification of vitamins B(1) (thiamine), B(6) (pyridoxamine, pyridoxal and pyridoxine) and B(12) in animal and plant foods. , 2007, Journal of chromatography. A.

[16]  A. Hall,et al.  Sodium thiosulfate or hydroxocobalamin for the empiric treatment of cyanide poisoning? , 2007, Annals of emergency medicine.

[17]  B. Mégarbane,et al.  Hydroxocobalamin for severe acute cyanide poisoning by ingestion or inhalation. , 2007, The American journal of emergency medicine.

[18]  M. Fojta,et al.  Brdicka-type processes of cysteine and cysteine-containing peptides on silver amalgam electrodes. , 2007, Analytica chimica acta.

[19]  I. Šestáková,et al.  Verification of Applicability of Mercury Meniscus Modified Silver Solid Amalgam Electrode for Determination of Heavy Metals in Plant Matrices , 2007 .

[20]  B. Yosypchuk,et al.  Silver Solid Amalgam Electrodes as Sensors for Chemical Carcinogens , 2006, Sensors (Basel, Switzerland).

[21]  J. Barek,et al.  Voltametrické stanovení submikromolárních koncen trací 3-nitrofluoranthenu a pendimethalinu na stribrné pevné amalgamové elektrodé , 2006 .

[22]  Libuše Trnková,et al.  Identification of current nature by elimination voltammetry with linear scan , 2005 .

[23]  M. Šlouf,et al.  Electronic structure and bonding in hydroxocobalamin. , 2005, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[24]  Nianjun Yang,et al.  Voltammetry of Vitamin B12 on a thin self-assembled monolayer modified electrode , 2005 .

[25]  M. Fojta,et al.  Use of Polished and Mercury Film-Modified Silver Solid Amalgam Electrodes in Electrochemical Analysis of DNA , 2005 .

[26]  M. Fojta,et al.  Detecting DNA Damage with a Silver Solid Amalgam Electrode , 2004 .

[27]  R. Fadrná Polished Silver Solid Amalgam Electrode: Further Characterization and Applications in Voltammetric Measurements , 2004 .

[28]  C. Banks,et al.  A self-catalytic carbon paste electrode for the detection of vitamin B12. , 2004, Analytical chemistry.

[29]  S. Hernández,et al.  Enhanced application of square wave voltammetry with glassy carbon electrode coupled to multivariate calibration tools for the determination of B(6) and B(12) vitamins in pharmaceutical preparations. , 2003, Talanta.

[30]  S. Sander,et al.  Study of the Complexation, Adsorption and Electrode Reaction Mechanisms of Chromium(VI) and (III) with DTPA Under Adsorptive Stripping Voltammetric Conditions , 2003 .

[31]  B. Yosypchuk,et al.  Electrodes of Nontoxic Solid Amalgams for Electrochemical Measurements , 2002 .

[32]  Yosypchuk Bogdan,et al.  Nontoxic electrodes of solid amalgams , 2002 .

[33]  Rene Kizek,et al.  Application of Elimination Voltammetry to Adsorptive Stripping of DNA , 2000 .

[34]  Ø. Mikkelsen,et al.  Dental Amalgam in Voltammetry. Some Preliminary Results , 2000 .

[35]  R. Banerjee,et al.  The Yin-Yang of cobalamin biochemistry. , 1997, Chemistry & biology.

[36]  Oldrich Dracka,et al.  Elimination voltammetry. Experimental verification and extension of theoretical results , 1996 .

[37]  Oldřich Dračka,et al.  Theory of current elimination in linear scan voltammetry , 1996 .

[38]  N. Campillo,et al.  Speciation of vitamin B12 analogues by liquid chromatography with flame atomic absorption spectrometric detection , 1996 .

[39]  A. Astier,et al.  Simultaneous determination of hydroxocobalamin and its cyanide complex cyanocobalamin in human plasma by high-performance liquid chromatography. Application to pharmacokinetic studies after high-dose hydroxocobalamin as an antidote for severe cyanide poisoning. , 1995, Journal of chromatography. B, Biomedical applications.

[40]  M. Forina,et al.  Chemometrics for analytical chemistry , 1992 .

[41]  H. Sawamoto Cathodic adsorption stripping analysis of vitamin B12 , 1985 .

[42]  J. Savéant,et al.  The electrochemistry of vitamin B12 , 1983 .

[43]  R. Birke,et al.  Electrochemical reduction of methylcobalamin and 5′-deoxyadenosylcobalamin on mercury in basic medium , 1983 .

[44]  C. L. Schmidt,et al.  Electrochemical investigation of surface phenomena at a mercury electrode in vitamin B12a solution , 1979 .

[45]  J. Savéant,et al.  Electrochemistry of vitamin B12. 2. Redox and acid-base equilibria in the B12a/B12r system. , 1977, Journal of the American Chemical Society.

[46]  H. Hogenkamp,et al.  Polarography of cobalamins and cobinamides. , 1970, Biochemistry.

[47]  B. Jaselskis,et al.  The Polarography of Vitamins B12r and B12a , 1954 .

[48]  W. K. Anslow,et al.  B12 vitamins (cobalamins). I. Vitamins B12c and B12d. , 1952, The Biochemical journal.