Evaluation and comparison of scoring systems for predicting stone-free status after flexible ureteroscopy for renal and ureteral stones

Objective To evaluate four predictive scores for stone-free rate (SFR) after flexible ureterorenoscopy (f-URS) with holmium-YAG laser fragmentation of renal and ureteral lithiasis. Methods We carried out a retrospective analysis of 800 f-URS procedures performed in our institution between January 2009 and December 2016. For each procedure, a single surgeon calculated the following scores: S.T.O.N.E score; Resorlu Unsal Stone Score (RUSS); modified Seoul National University Renal Complexity (S-ReSC) score; and Ito’s score. Results Overall SFR was 74.1%. Univariate analysis demonstrated that stone size (p<0.0001), stone volume (p<0.0001), stone number (p = 0.004), narrow lower pole infundibulopelvic angle (IPA) (p = 0.003) and lower pole location + IPA <45° (p = 0.011) were significantly associated with SFR. All scores differed between the stone-free and non-stone-free groups. Area under the curve of the receiving operator characteristics curve was calculated for each score: 0.617 [95%CI: 0.575–0.660] for the S.T.O.N.E score; 0.644 [95%CI: 0.609–0.680] for the RUSS; 0.651 [95%CI: 0.606–0.697] for the S-ReSC score; and 0.735 [95%CI: 0.692–0.777] for Ito’s nomogram. Conclusion All four scores were predictive of SFR after f-URS. Ito’s score was the most sensitive. However, the performance of all scores in this analysis was lower than in developmental studies.

[1]  BinbayMurat,et al.  External Comparison of Recent Predictive Nomograms for Stone-Free Rate Using Retrograde Flexible Ureteroscopy with Laser Lithotripsy , 2016 .

[2]  F. Kleinclauss,et al.  Flexible Ureterorenoscopy for Renal and Proximal Ureteral Stone in Patients with Previous Ureteral Stenting: Impact on Stone-Free Rate and Morbidity. , 2016, Journal of endourology.

[3]  M. Pearle,et al.  Surgical Management of Stones: American Urological Association/Endourological Society Guideline, PART I. , 2016, The Journal of urology.

[4]  G. Guichard,et al.  Étude rétrospective comparant la néphrolithotomie percutanée et l’uréterorénoscopie souple pour le traitement des calculs intrarénaux , 2016 .

[5]  J. J. de la Rosette,et al.  Complications associated with ureterorenoscopy (URS) related to treatment of urolithiasis: the Clinical Research Office of Endourological Society URS Global study , 2016, World Journal of Urology.

[6]  M. Huynh,et al.  Multicenter External Validation and Comparison of Stone Scoring Systems in Predicting Outcomes After Percutaneous Nephrolithotomy. , 2016, Journal of endourology.

[7]  T. Knoll,et al.  EAU Guidelines on Interventional Treatment for Urolithiasis. , 2016, European urology.

[8]  Seung-June Oh,et al.  Clinical Nomograms to Predict Stone-Free Rates after Shock-Wave Lithotripsy: Development and Internal-Validation , 2016, PloS one.

[9]  F. Kleinclauss,et al.  [Flexible ureterorenoscopy vs percutaneous nephrolithotomy for renal stone management: Retrospective study]. , 2016, Progres en urologie : journal de l'Association francaise d'urologie et de la Societe francaise d'urologie.

[10]  H. Kinoshita,et al.  Influence of Pelvicaliceal Anatomy on Stone Clearance After Flexible Ureteroscopy and Holmium Laser Lithotripsy for Large Renal Stones. , 2015, Journal of endourology.

[11]  S. Cho,et al.  External Validation and Evaluation of Reliability and Validity of the Modified Seoul National University Renal Stone Complexity Scoring System to Predict Stone-Free Status After Retrograde Intrarenal Surgery. , 2015, Journal of endourology.

[12]  Y. Noureldin,et al.  External validation of the S.T.O.N.E. nephrolithometry scoring system. , 2015, Canadian Urological Association journal = Journal de l'Association des urologues du Canada.

[13]  M. Yao,et al.  Development and internal validation of a nomogram for predicting stone‐free status after flexible ureteroscopy for renal stones , 2015, BJU international.

[14]  M. Laopaiboon,et al.  Extracorporeal shock wave lithotripsy (ESWL) versus percutaneous nephrolithotomy (PCNL) or retrograde intrarenal surgery (RIRS) for kidney stones. , 2014, The Cochrane database of systematic reviews.

[15]  JacquemetBaptiste,et al.  Comparison of the efficacy and morbidity of flexible ureterorenoscopy for lower pole stones compared with other renal locations. , 2014 .

[16]  G. Guichard,et al.  Urétérorénoscopie souple avec laser Holmium-YAG dans la prise en charge des lithiases urinaires chez le patient obèse : résultats d’une cohorte monocentrique , 2014 .

[17]  Y. Park,et al.  Modified Seoul National University Renal Stone Complexity score for retrograde intrarenal surgery , 2014, Urolithiasis.

[18]  KnollThomas,et al.  Flexible Ureterorenoscopy for Lower Pole Stones: Influence of the Collecting System's Anatomy , 2014 .

[19]  F. Kleinclauss,et al.  Comparison of the efficacy and morbidity of flexible ureterorenoscopy for lower pole stones compared with other renal locations. , 2014, Journal of endourology.

[20]  F. Kleinclauss,et al.  [Flexible ureterorenoscopy in obese patients: results from a large monocenter cohort]. , 2014, Progres en urologie : journal de l'Association francaise d'urologie et de la Societe francaise d'urologie.

[21]  F. Kim,et al.  The S.T.O.N.E. Score: a new assessment tool to predict stone free rates in ureteroscopy from pre-operative radiological features. , 2014, International braz j urol : official journal of the Brazilian Society of Urology.

[22]  D. Moreira,et al.  S.T.O.N.E. nephrolithometry: novel surgical classification system for kidney calculi. , 2013, Urology.

[23]  A. Unsal,et al.  A new scoring system for predicting stone-free rate after retrograde intrarenal surgery: the "resorlu-unsal stone score". , 2012, Urology.

[24]  F. Kleinclauss,et al.  Ureterorenoscopy with holmium-yttrium-aluminum-garnet fragmentation is a safe and efficient technique for stone treatment in patients with a body mass index superior to 30 kg/m2. , 2012, Journal of endourology.

[25]  K. Thomas,et al.  The Guy's stone score--grading the complexity of percutaneous nephrolithotomy procedures. , 2011, Urology.

[26]  A. Ray,et al.  A clinical nomogram to predict the successful shock wave lithotripsy of renal and ureteral calculi. , 2011, The Journal of urology.

[27]  D. Assimos,et al.  Kidney stones: a global picture of prevalence, incidence, and associated risk factors. , 2010, Reviews in urology.

[28]  M. Daudon,et al.  [Epidemiology of urolithiasis]. , 2011, Progres en urologie : journal de l'Association francaise d'urologie et de la Societe francaise d'urologie.

[29]  M. Daudon,et al.  [Epidemiology of urolithiasis]. , 2008, Progres en urologie : journal de l'Association francaise d'urologie et de la Societe francaise d'urologie.

[30]  Lee Cheng Zhao,et al.  Prestenting improves ureteroscopic stone-free rates. , 2007, Journal of endourology.

[31]  A. Portis,et al.  Intraoperative fragment detection during percutaneous nephrolithotomy: evaluation of high magnification rotational fluoroscopy combined with aggressive nephroscopy. , 2006, The Journal of urology.

[32]  H. Delacour,et al.  La courbe ROC (receiver operating characteristic) : principes et principales applications en biologie clinique , 2005 .

[33]  A. Servonnet,et al.  [ROC (receiver operating characteristics) curve: principles and application in biology]. , 2005, Annales de biologie clinique.

[34]  N. Demartines,et al.  Classification of Surgical Complications: A New Proposal With Evaluation in a Cohort of 6336 Patients and Results of a Survey , 2004, Annals of Surgery.

[35]  F. Sampaio Renal collecting system anatomy: its possible role in the effectiveness of renal stone treatment , 2001, Current opinion in urology.

[36]  R. Clayman,et al.  Lower caliceal stone clearance after shock wave lithotripsy or ureteroscopy: the impact of lower pole radiographic anatomy. , 1998, Journal of Urology.