Toolbox for reconstructing quantum theory from rules on information acquisition

We develop an operational approach for reconstructing the quantum theory of qubit systems from elementary rules on information acquisition. The focus lies on an observer O interrogating a system S with binary questions and S's state is taken as O's `catalogue of knowledge' about S. The mathematical tools of the framework are simple and we attempt to highlight all underlying assumptions. Four rules are imposed, asserting (1) a limit on the amount of information available to O; (2) the mere existence of complementary information; (3) O's total amount of information to be preserved in-between interrogations; and, (4) O's `catalogue of knowledge' to change continuously in time in-between interrogations and every consistent such evolution to be possible. This approach permits a constructive derivation of quantum theory, elucidating how the ensuing independence, complementarity and compatibility structure of O's questions matches that of projective measurements in quantum theory, how entanglement and monogamy of entanglement, non-locality and, more generally, how the correlation structure of arbitrarily many qubits and rebits arises. The rules yield a reversible time evolution and a quadratic measure, quantifying O's information about S. Finally, it is shown that the four rules admit two solutions for the simplest case of a single elementary system: the Bloch ball and disc as state spaces for a qubit and rebit, respectively, together with their symmetries as time evolution groups. The reconstruction for arbitrarily many qubits is completed in a companion paper (arXiv:1511.01130) where an additional rule eliminates the rebit case. This approach is inspired by (but does not rely on) the relational interpretation and yields a novel formulation of quantum theory in terms of questions.

[1]  L. Crane Clock and category: Is quantum gravity algebraic? , 1995, gr-qc/9504038.

[2]  Pérès Separability Criterion for Density Matrices. , 1996, Physical review letters.

[3]  Caslav Brukner,et al.  Information and Fundamental Elements of the Structure of Quantum Theory , 2002, quant-ph/0212084.

[4]  Jonathan Barrett Information processing in generalized probabilistic theories , 2005 .

[5]  A. Winter,et al.  Information causality as a physical principle , 2009, Nature.

[6]  Nicolas Gisin,et al.  Weinberg's non-linear quantum mechanics and supraluminal communications , 1990 .

[7]  Adan Cabello,et al.  Specker's fundamental principle of quantum mechanics , 2012, 1212.1756.

[8]  Stephanie Wehner,et al.  An information-theoretic principle implies that any discrete physical theory is classical , 2013, Nature Communications.

[9]  R. Sorkin On the Entropy of the Vacuum Outside a Horizon , 2014, 1402.3589.

[10]  T. Görnitz,et al.  An Introduction to Carl Friedrich von Weizsäcker’s Program for a Reconstruction of Quantum Theory , 2003 .

[11]  S. Aaronson Is Quantum Mechanics An Island in Theoryspace , 2004, quant-ph/0401062.

[12]  A. Zeilinger A Foundational Principle for Quantum Mechanics , 1999, Synthese Library.

[13]  Borivoje Dakic,et al.  Theories of systems with limited information content , 2008, 0804.1423.

[14]  S. Kochen A Reconstruction of Quantum Mechanics , 2013, Synthese Library.

[15]  Christopher A. Fuchs,et al.  Information gain versus state disturbance in quantum theory , 1996 .

[16]  L. Hardy Foliable Operational Structures for General Probabilistic Theories , 2009, 0912.4740.

[17]  Lucien Hardy,et al.  A formalism-local framework for general probabilistic theories, including quantum theory , 2010, Mathematical Structures in Computer Science.

[18]  L. Hardy Quantum Theory From Five Reasonable Axioms , 2001, quant-ph/0101012.

[19]  Robert Oeckl,et al.  A first-principles approach to physics based on locality and operationalism , 2014, 1412.7731.

[20]  Lluis Masanes,et al.  Three-dimensionality of space and the quantum bit: an information-theoretic approach , 2012, 1206.0630.

[21]  Lee,et al.  Quantum source of entropy for black holes. , 1986, Physical review. D, Particles and fields.

[22]  C. Rovelli,et al.  Relational Quantum Mechanics , 2006 .

[23]  Christopher A. Fuchs Information Gain vs. State Disturbance in Quantum Theory , 1996 .

[24]  C. Rovelli What is observable in classical and quantum gravity , 1991 .

[25]  Markus P. Mueller,et al.  Three-dimensionality of space and the quantum bit: how to derive both from information-theoretic postulates , 2012 .

[26]  M. Horodecki,et al.  Fundamental limitations for quantum and nanoscale thermodynamics , 2011, Nature Communications.

[27]  C. Rovelli Quantum reference systems , 1991 .

[28]  H. Barnum,et al.  Entropy and information causality in general probabilistic theories , 2009, 0909.5075.

[29]  E. Jaynes Information Theory and Statistical Mechanics , 1957 .

[30]  Weinberg,et al.  Precision tests of quantum mechanics. , 1989, Physical review letters.

[31]  Markus P. Mueller,et al.  Entanglement and the three-dimensionality of the Bloch ball , 2011, 1111.4060.

[32]  William K. Wootters,et al.  Entanglement Sharing in Real-Vector-Space Quantum Theory , 2010, 1007.1479.

[33]  Lucien Hardy,et al.  Reconstructing Quantum Theory , 2013, 1303.1538.

[34]  J. Tambornino Relational Observables in Gravity: a Review , 2011, 1109.0740.

[35]  A. J. Short,et al.  Entanglement and the foundations of statistical mechanics , 2005 .

[36]  Philipp A. Hoehn,et al.  Effective approach to the problem of time: general features and examples , 2010, 1011.3040.

[37]  Lluis Masanes,et al.  Information-Theoretic Postulates for Quantum Theory , 2012, 1203.4516.

[38]  S. Popescu,et al.  Quantum nonlocality as an axiom , 1994 .

[39]  Caslav Brukner,et al.  Information Invariance and Quantum Probabilities , 2009, 0905.0653.

[40]  William K. Wootters,et al.  The rebit three-tangle and its relation to two-qubit entanglement , 2014, 1402.2219.

[41]  Asher Peres,et al.  Quantum Theory: Concepts and Methods , 1994 .

[42]  J. Polchinski,et al.  Weinberg's nonlinear quantum mechanics and the Einstein-Podolsky-Rosen paradox. , 1991, Physical review letters.

[43]  Niels Bohr,et al.  Atomic Theory and the Description of Nature , 1934 .

[44]  Philipp A. Hoehn,et al.  An effective approach to the problem of time , 2010, 1009.5953.

[45]  Robert C. Myers,et al.  On the architecture of spacetime geometry , 2012, 1212.5183.

[46]  C. Fuchs,et al.  Quantum probabilities as Bayesian probabilities , 2001, quant-ph/0106133.

[47]  L. Masanes,et al.  Deriving quantum theory from its local structure and reversibility. , 2011, Physical review letters.

[48]  L. Ballentine,et al.  Probabilistic and Statistical Aspects of Quantum Theory , 1982 .

[49]  C. Fuchs,et al.  Entanglement of Formation of an Arbitrary State of Two Rebits , 2000, quant-ph/0009063.

[50]  Planck-scale models of the Universe , 2002, gr-qc/0210086.

[51]  F. Gonseth,et al.  DIE LOGIK NICHT GLEICHZEITIG ENTSCHEIDBARER AUSSAGEN , 1990 .

[52]  A. Ashtekar,et al.  Loop quantum cosmology: a status report , 2011, 1108.0893.

[53]  C. Fuchs Quantum Mechanics as Quantum Information (and only a little more) , 2002, quant-ph/0205039.

[54]  Caslav Brukner,et al.  OPERATIONALLY INVARIANT INFORMATION IN QUANTUM MEASUREMENTS , 1999 .

[55]  Charles H. Bennett,et al.  The thermodynamics of computation—a review , 1982 .

[56]  R. Oeckl A local and operational framework for the foundations of physics , 2016, Advances in Theoretical and Mathematical Physics.

[57]  Borivoje Dakic,et al.  The classical limit of a physical theory and the dimensionality of space , 2013, 1307.3984.

[58]  R. Spekkens Contextuality for preparations, transformations, and unsharp measurements , 2004, quant-ph/0406166.

[59]  Takayoshi Kobayashi,et al.  Quantum Optics as a Relativistic Theory of Light , 1996 .

[60]  John A Smolin,et al.  Can closed timelike curves or nonlinear quantum mechanics improve quantum state discrimination or help solve hard problems? , 2009, Physical review letters.

[61]  R. Spekkens,et al.  Quantum from principles , 2012, ArXiv.

[62]  Holger Lyre,et al.  Quantum theory of Ur-objects as a theory of information , 1995 .

[63]  C. Rovelli,et al.  Relational EPR , 2006, quant-ph/0604064.

[64]  T. Jacobson GRAVITATION AND VACUUM ENTANGLEMENT ENTROPY , 2012, 1204.6349.

[65]  A. Cabello Simple explanation of the quantum violation of a fundamental inequality. , 2012, Physical review letters.

[66]  G. Chiribella,et al.  Measurement sharpness cuts nonlocality and contextuality in every physical theory , 2014, 1404.3348.

[67]  Maria Luisa Dalla Chiara,et al.  Logical self reference, set theoretical paradoxes and the measurement problem in quantum mechanics , 1977, J. Philos. Log..

[68]  David Pérez-García,et al.  Existence of an information unit as a postulate of quantum theory , 2012, Proceedings of the National Academy of Sciences.

[69]  Fotini Markopoulou Quantum causal histories , 2000 .

[70]  Caslav Brukner,et al.  Young's experiment and the finiteness of information , 2002, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[71]  G. D’Ariano,et al.  Probabilistic theories with purification , 2009, 0908.1583.

[72]  W. Wootters,et al.  Distributed Entanglement , 1999, quant-ph/9907047.

[73]  Jacobson,et al.  Thermodynamics of spacetime: The Einstein equation of state. , 1995, Physical review letters.

[74]  Markus P. Mueller,et al.  A derivation of quantum theory from physical requirements , 2010, 1004.1483.

[75]  Markus P. Mueller,et al.  Higher-order interference and single-system postulates characterizing quantum theory , 2014, 1403.4147.

[76]  B. Dittrich Partial and complete observables for canonical general relativity , 2005, gr-qc/0507106.

[77]  Marek Zukowski,et al.  The Essence of Entanglement , 2001, Fundamental Theories of Physics.

[78]  Carlton M. Caves,et al.  Quantum information: How much information in a state vector? , 1996 .

[79]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[80]  James B. Hartle,et al.  Quantum Mechanics of Individual Systems , 1968, 1907.02953.

[81]  C. Fuchs,et al.  Conditions for compatibility of quantum-state assignments , 2002, quant-ph/0206110.

[82]  Thomas Breuer,et al.  The Impossibility of Accurate State Self-Measurements , 1995, Philosophy of Science.

[83]  Robert W. Spekkens,et al.  Entropy and Information Causality in General Probabilistic Theories (Addendum) , 2012 .

[84]  R. Spekkens,et al.  Specker’s parable of the overprotective seer: A road to contextuality, nonlocality and complementarity , 2010 .

[85]  E. Álvarez,et al.  Quantum Gravity , 2004, gr-qc/0405107.

[86]  Pérès,et al.  Quantum-state disturbance versus information gain: Uncertainty relations for quantum information. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[87]  andMarkus PMüller An operational approach to spacetime symmetries : Lorentz transformations from quantum communication , 2016 .

[88]  Artur Tsobanjan,et al.  Effective relational dynamics of the closed FRW model universe minimally coupled to a massive scalar field , 2011 .

[89]  Soojoon Lee,et al.  Strong monogamy conjecture for multiqubit entanglement: the four-qubit case. , 2014, Physical review letters.

[90]  R. Spekkens Evidence for the epistemic view of quantum states: A toy theory , 2004, quant-ph/0401052.

[91]  P. González-Díaz On the wave function of the universe , 1985 .

[92]  G. D’Ariano,et al.  Informational derivation of quantum theory , 2010, 1011.6451.

[93]  N. David Mermin Compatibility of state assignments , 2002 .

[94]  Rovelli,et al.  Time in quantum gravity: An hypothesis. , 1991, Physical review. D, Particles and fields.

[95]  Franco Nori,et al.  Colloquium: The physics of Maxwell's demon and information , 2007, 0707.3400.

[96]  E. Specker DIE LOGIK NICHT GLEICHZEITIG ENTSC HEIDBARER AUSSAGEN , 1960 .

[97]  E. Harrison Quantum Cosmology , 2022, Nature.

[98]  A. Zeilinger,et al.  Conceptual inadequacy of the Shannon information in quantum measurements , 2000, quant-ph/0006087.

[99]  C. Fuchs,et al.  Unknown Quantum States: The Quantum de Finetti Representation , 2001, quant-ph/0104088.

[100]  L. Hackl,et al.  Horizon complementarity in elliptic de Sitter space , 2014, 1409.6753.

[101]  Č. Brukner,et al.  Quantum Theory and Beyond: Is Entanglement Special? , 2009, 0911.0695.

[102]  Caslav Brukner,et al.  Quantum Measurement and Shannon Information, A Reply to M. J. W. Hall , 2000 .