High surface conductivity of Fermi-arc electrons in Weyl semimetals

Weyl semimetals (WSMs), a new type of topological condensed matter, are currently attracting great interest due to their unusual electronic states and intriguing transport properties such as chiral anomaly induced negative magnetoresistance, a semi--quantized anomalous Hall effect and the debated chiral magnetic effect. These systems are close cousins of topological insulators (TIs) which are known for their disorder tolerant surface states. Similarly, WSMs exhibit unique topologically protected Fermi arcs surface states. Here we analyze electron--phonon scattering, a primary source of resistivity in metals at finite temperatures, as a function of the shape of the Fermi arc where we find that the impact on surface transport is significantly dependent on the arc curvature and disappears in the limit of a straight arc. Next, we discuss the effect of strong surface disorder on the resistivity by numerically simulating a tight binding model with the presence of quenched surface vacancies using the Coherent Potential Approximation (CPA) and Kubo--Greenwood formalism. We find that the limit of a straight arc geometry is remarkably disorder tolerant, producing surface conductivity that is a factor of 50 larger of a comparable set up with surface states of TI. Finally, a simulation of the effects of surface vacancies on TaAs is presented, illustrating the disorder tolerance of the topological surface states in a recently discovered WSM material.

[1]  Laura M. Castelli Physics I.3 , 2018 .

[2]  E. J. Mele,et al.  Weyl and Dirac semimetals in three-dimensional solids , 2017, 1705.01111.

[3]  C. Felser,et al.  Optical signature of Weyl electronic structures in tantalum pnictides TaPn (Pn = P, As) , 2017, 1705.08774.

[4]  Su-Yang Xu,et al.  A strongly robust type II Weyl fermion semimetal state in Ta3S2 , 2016, Science Advances.

[5]  Timothy M. McCormick,et al.  Spectroscopic evidence for a type II Weyl semimetallic state in MoTe2. , 2016, Nature materials.

[6]  V. A. Miransky,et al.  Origin of dissipative Fermi arc transport in Weyl semimetals , 2016, 1603.06004.

[7]  M. Troyer,et al.  Robust Type-II Weyl Semimetal Phase in Transition Metal Diphosphides XP_{2} (X=Mo, W). , 2016, Physical review letters.

[8]  Shanjuan Jiang,et al.  Quasiparticle interference of the Fermi arcs and surface-bulk connectivity of a Weyl semimetal , 2016, Science.

[9]  S. Das Sarma,et al.  Universal optical conductivity of a disordered Weyl semimetal , 2016, Scientific Reports.

[10]  J. Carbotte,et al.  Optical and transport properties in three-dimensional Dirac and Weyl semimetals , 2016 .

[11]  D. Huse,et al.  Rare region induced avoided quantum criticality in disordered three-dimensional Dirac and Weyl semimetals , 2016, 1602.02742.

[12]  Haijun Zhang,et al.  Symmetry-protected ideal Weyl semimetal in HgTe-class materials , 2015, Nature Communications.

[13]  Su-Yang Xu,et al.  Prediction of an arc-tunable Weyl Fermion metallic state in MoxW1−xTe2 , 2015, Nature Communications.

[14]  X. Dai,et al.  Observation of Weyl nodes and Fermi arcs in tantalum phosphide , 2015, Nature Communications.

[15]  Dong Yu,et al.  Spin generation via bulk spin current in three-dimensional topological insulators , 2014, Nature Communications.

[16]  C. Felser,et al.  Evolution of the Fermi surface of Weyl semimetals in the transition metal pnictide family. , 2016, Nature materials.

[17]  X. Dai,et al.  Two-dimensional oxide topological insulator with iron-pnictide superconductor LiFeAs structure , 2015, 1509.01686.

[18]  C. Felser,et al.  Erratum: Weyl semimetal phase in the non-centrosymmetric compound TaAs , 2015, Nature Physics.

[19]  Su-Yang Xu,et al.  Discovery of a Weyl fermion state with Fermi arcs in niobium arsenide , 2015, Nature Physics.

[20]  Xi Dai,et al.  Type-II Weyl semimetals , 2015, Nature.

[21]  G. Gu,et al.  Optical spectroscopy study of the three-dimensional Dirac semimetal ZrTe 5 , 2015, 1505.00307.

[22]  S Das Sarma,et al.  Anderson Localization and the Quantum Phase Diagram of Three Dimensional Disordered Dirac Semimetals. , 2015, Physical review letters.

[23]  C. Felser,et al.  Extremely large magnetoresistance and ultrahigh mobility in the topological Weyl semimetal candidate NbP , 2015, Nature Physics.

[24]  Shuang Jia,et al.  Discovery of a Weyl fermion semimetal and topological Fermi arcs , 2015, Science.

[25]  L. Radzihovsky,et al.  Critical transport in weakly disordered semiconductors and semimetals. , 2014, Physical Review Letters.

[26]  P. Brouwer,et al.  Quantum transport of disordered Weyl semimetals at the nodal point. , 2014, Physical review letters.

[27]  A. Vishwanath,et al.  Quantum oscillations from surface Fermi arcs in Weyl and Dirac semimetals , 2014, Nature Communications.

[28]  S. Ryu,et al.  Diffusive transport in Weyl semimetals , 2013, 1309.3278.

[29]  G. Bauer,et al.  Negligible surface reactivity of topological insulators Bi2Se3 and Bi2Te3 towards oxygen and water. , 2013, ACS nano.

[30]  A. Vishwanath,et al.  Probing the chiral anomaly with nonlocal transport in three dimensional topological semimetals , 2013, 1306.1234.

[31]  Xiaoliang Qi,et al.  Recent developments in transport phenomena in Weyl semimetals , 2013, 1309.4464.

[32]  J. Sinova,et al.  Reading charge transport from the spin dynamics on the surface of a topological insulator. , 2013, Physical review letters.

[33]  T. Das,et al.  Stability of Weyl metals under imuurity scattering , 2012, 1210.6121.

[34]  Yize Jin,et al.  Topological insulators , 2014, Topology in Condensed Matter.

[35]  Holger Fehske,et al.  Fate of topological-insulator surface states under strong disorder , 2012, 1203.2628.

[36]  D. Carpentier,et al.  Topological Weyl semi-metal from a lattice model , 2012, 1202.3459.

[37]  A. Vishwanath,et al.  Charge transport in Weyl semimetals. , 2011, Physical review letters.

[38]  S. Adam,et al.  Surface conduction of topological Dirac electrons in bulk insulating Bi2Se3 , 2011, Nature Physics.

[39]  Leon Balents,et al.  Weyl semimetal in a topological insulator multilayer. , 2011, Physical review letters.

[40]  Kai-Yu Yang,et al.  Quantum Hall effects in a Weyl semimetal: Possible application in pyrochlore iridates , 2011, 1105.2353.

[41]  Ashvin Vishwanath,et al.  Subject Areas : Strongly Correlated Materials A Viewpoint on : Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates , 2011 .

[42]  Zhi-Xun Shen,et al.  Rapid surface oxidation as a source of surface degradation factor for Bi₂Se₃. , 2011, ACS nano.

[43]  R J Cava,et al.  Bulk band gap and surface state conduction observed in voltage-tuned crystals of the topological insulator Bi2Se3. , 2010, Physical review letters.

[44]  M. Fuhrer Textbook physics from a cutting-edge material , 2010 .

[45]  P. Kim,et al.  Controlling electron-phonon interactions in graphene at ultrahigh carrier densities. , 2010, Physical review letters.

[46]  E. H. Hwang,et al.  Two-dimensional surface charge transport in topological insulators , 2010, 1005.4931.

[47]  Joel E Moore,et al.  The birth of topological insulators , 2010, Nature.

[48]  C. Kane,et al.  Topological Insulators , 2019, Electromagnetic Anisotropy and Bianisotropy.

[49]  Xiao-Liang Qi,et al.  The quantum spin Hall effect and topological insulators , 2010, 1001.1602.

[50]  Kristjan Haule,et al.  Dynamical mean-field theory within the full-potential methods: Electronic structure of CeIrIn 5 , CeCoIn 5 , and CeRhIn 5 , 2009, 0907.0195.

[51]  M. Koshino,et al.  Topological delocalization of two-dimensional massless Dirac fermions. , 2007, Physical review letters.

[52]  S. Sarma,et al.  Dielectric function, screening, and plasmons in two-dimensional graphene , 2006, cond-mat/0610561.

[53]  G. Kotliar,et al.  Electronic structure calculations of strongly correlated electron systems by the dynamical mean-field method , 2006 .

[54]  F. Guinea,et al.  Electronic properties of disordered two-dimensional carbon , 2005, cond-mat/0512091.

[55]  C. Marianetti,et al.  Electronic structure calculations with dynamical mean-field theory , 2005, cond-mat/0511085.

[56]  G. Volovik,et al.  The Universe in a Helium Droplet , 2003 .

[57]  Y. C. Chen,et al.  Diluted quantum antiferromagnets: Spin excitations and long-range order , 2001, cond-mat/0107488.

[58]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[59]  Savrasov,et al.  Linear-response theory and lattice dynamics: A muffin-tin-orbital approach. , 1996, Physical review. B, Condensed matter.

[60]  Shih,et al.  Double-tip scanning tunneling microscope for surface analysis. , 1995, Physical review. B, Condensed matter.

[61]  Savrasov,et al.  Linear-response calculations of electron-phonon interactions. , 1994, Physical review letters.

[62]  Varma,et al.  Transport and thermal properties of heavy-fermion superconductors: A unified picture. , 1986, Physical review letters.

[63]  Holger Bech Nielsen,et al.  The Adler-Bell-Jackiw anomaly and Weyl fermions in a crystal , 1983 .

[64]  H. Nielsen,et al.  A no-go theorem for regularizing chiral fermions , 1981 .

[65]  Philip B. Allen,et al.  New method for solving Boltzmann's equation for electrons in metals , 1978 .

[66]  F. Yonezawa,et al.  Coherent Potential Approximation. Basic concepts and applications , 1973 .