Adaptive constraint handling and Success History Differential Evolution for CEC 2017 Constrained Real-Parameter Optimization

This paper presents Success-History Based Adaptive Differential Evolution Algorithm (SHADE) including Linear population size reduction (L-SHADE), enhanced with adaptive constraint violation handling, applied to the benchmark for CEC 2017 Competition on Constrained Real-Parameter Optimization. The constraint handling method prioritizes the feasible solutions before infeasible, while disregarding the constraint violation values below an adaptive threshold, i.e. adaptive ϵ-constraint handling. The 28 constrained test functions on 10, 30, 50, and 100 dimensions are assessed on the benchmark and the required resulting final fitnesses, constraints violations, and success rates are reported for 25 independent runs of the proposed algorithm under the budget of fixed maximum number of fitness evaluations for 10, 30, 50, and 100 dimensional test functions.

[1]  Jing J. Liang,et al.  Dynamic Multi-Swarm Particle Swarm Optimizer with a Novel Constraint-Handling Mechanism , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[2]  Carlos A. Coello Coello,et al.  Constraint-handling in nature-inspired numerical optimization: Past, present and future , 2011, Swarm Evol. Comput..

[3]  Ponnuthurai N. Suganthan,et al.  Recent advances in differential evolution - An updated survey , 2016, Swarm Evol. Comput..

[4]  Janez Brest,et al.  Population size reduction for the differential evolution algorithm , 2008, Applied Intelligence.

[5]  Qingfu Zhang,et al.  Multiobjective evolutionary algorithms: A survey of the state of the art , 2011, Swarm Evol. Comput..

[6]  Kenneth Sörensen,et al.  Metaheuristics - the metaphor exposed , 2015, Int. Trans. Oper. Res..

[7]  Ponnuthurai N. Suganthan,et al.  Differential evolution with ensemble of constraint handling techniques for solving CEC 2010 benchmark problems , 2010, IEEE Congress on Evolutionary Computation.

[8]  A. E. Eiben,et al.  Introduction to Evolutionary Computing , 2003, Natural Computing Series.

[9]  Jing J. Liang,et al.  Comprehensive learning particle swarm optimizer for global optimization of multimodal functions , 2006, IEEE Transactions on Evolutionary Computation.

[10]  Aleš Zamuda,et al.  Short-term combined economic and emission hydrothermal optimization by surrogate differential evolution , 2015 .

[11]  Alex S. Fukunaga,et al.  Improving the search performance of SHADE using linear population size reduction , 2014, 2014 IEEE Congress on Evolutionary Computation (CEC).

[12]  Jason Sheng-Hong Tsai,et al.  A self-optimization approach for L-SHADE incorporated with eigenvector-based crossover and successful-parent-selecting framework on CEC 2015 benchmark set , 2015, 2015 IEEE Congress on Evolutionary Computation (CEC).

[13]  Witold Pedrycz,et al.  A variable reduction strategy for evolutionary algorithms handling equality constraints , 2015, Appl. Soft Comput..

[14]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[15]  P. N. Suganthan,et al.  Ensemble of Constraint Handling Techniques , 2010, IEEE Transactions on Evolutionary Computation.

[16]  Alex S. Fukunaga,et al.  Evaluating the performance of SHADE on CEC 2013 benchmark problems , 2013, 2013 IEEE Congress on Evolutionary Computation.

[17]  Dervis Karaboga,et al.  A modified Artificial Bee Colony (ABC) algorithm for constrained optimization problems , 2011, Appl. Soft Comput..

[18]  Janez Brest,et al.  Differential Evolution with Self-adaptation and Local Search for Constrained Multiobjective Optimization , 2009, 2009 IEEE Congress on Evolutionary Computation.

[19]  Petr Bujok,et al.  Controlled restart in differential evolution applied to CEC2014 benchmark functions , 2014, 2014 IEEE Congress on Evolutionary Computation (CEC).

[20]  Janez Brest,et al.  Self-adaptive control parameters' randomization frequency and propagations in differential evolution , 2015, Swarm Evol. Comput..

[21]  Patrick Siarry,et al.  A survey on optimization metaheuristics , 2013, Inf. Sci..

[22]  Tetsuyuki Takahama,et al.  Solving Nonlinear Constrained Optimization Problems by the ε Constrained Differential Evolution , 2006, 2006 IEEE International Conference on Systems, Man and Cybernetics.

[23]  P. Suganthan,et al.  Problem Definitions and Evaluation Criteria for the CEC 2010 Competition on Constrained Real- Parameter Optimization , 2010 .

[24]  Qingfu Zhang,et al.  Differential Evolution With Composite Trial Vector Generation Strategies and Control Parameters , 2011, IEEE Transactions on Evolutionary Computation.

[25]  Robert G. Reynolds,et al.  A differential evolution algorithm with success-based parameter adaptation for CEC2015 learning-based optimization , 2015, 2015 IEEE Congress on Evolutionary Computation (CEC).

[26]  P. N. Suganthan,et al.  Differential Evolution Algorithm With Strategy Adaptation for Global Numerical Optimization , 2009, IEEE Transactions on Evolutionary Computation.

[27]  Guohua Wu,et al.  Differential evolution with multi-population based ensemble of mutation strategies , 2016, Inf. Sci..

[28]  Arthur C. Sanderson,et al.  JADE: Adaptive Differential Evolution With Optional External Archive , 2009, IEEE Transactions on Evolutionary Computation.

[29]  Janez Brest,et al.  Constrained Real-Parameter Optimization with ε -Self-Adaptive Differential Evolution , 2009 .

[30]  Dervis Karaboga,et al.  A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm , 2007, J. Glob. Optim..

[31]  Nikolaus Hansen,et al.  Completely Derandomized Self-Adaptation in Evolution Strategies , 2001, Evolutionary Computation.

[32]  Robert G. Reynolds,et al.  Algorithm with Success­ based Parameter Adaptation for CEC2015 Leaming­ based Optimization , 2015 .

[33]  Mehmet Fatih Tasgetiren,et al.  Differential evolution algorithm with ensemble of parameters and mutation strategies , 2011, Appl. Soft Comput..

[34]  Robert G. Reynolds,et al.  An ensemble sinusoidal parameter adaptation incorporated with L-SHADE for solving CEC2014 benchmark problems , 2016, 2016 IEEE Congress on Evolutionary Computation (CEC).

[35]  Ales Zamuda,et al.  Constrained differential evolution optimization for underwater glider path planning in sub-mesoscale eddy sampling , 2016, Appl. Soft Comput..

[36]  Petr Bujok,et al.  L-SHADE with competing strategies applied to CEC2015 learning-based test suite , 2016, 2016 IEEE Congress on Evolutionary Computation (CEC).

[37]  P. N. Suganthan,et al.  Differential Evolution: A Survey of the State-of-the-Art , 2011, IEEE Transactions on Evolutionary Computation.

[38]  Janez Brest,et al.  iL-SHADE: Improved L-SHADE algorithm for single objective real-parameter optimization , 2016, 2016 IEEE Congress on Evolutionary Computation (CEC).

[39]  Ville Tirronen,et al.  Recent advances in differential evolution: a survey and experimental analysis , 2010, Artificial Intelligence Review.

[40]  Ponnuthurai N. Suganthan,et al.  Real-parameter evolutionary multimodal optimization - A survey of the state-of-the-art , 2011, Swarm Evol. Comput..

[41]  Adam P. Piotrowski,et al.  Review of Differential Evolution population size , 2017, Swarm Evol. Comput..

[42]  Janez Brest,et al.  An improved self-adaptive differential evolution algorithm in single objective constrained real-parameter optimization , 2010, IEEE Congress on Evolutionary Computation.