Theta-burst stimulation over human frontal cortex distorts perceptual stability across eye movements.

We perceive a stable outside world despite the constant changes of visual input induced by our eye movements. Internal monitoring of a corollary discharge associated with oculomotor commands may help to anticipate the perceptual consequences of impending eye movements. The primate frontal eye fields have repeatedly been presumed to participate in the maintenance of perceptual stability across eye movements. However, a direct link between integrity of frontal oculomotor areas and perceptual stability is missing so far. Here, we show that transcranial magnetic stimulation (TMS) over the right human frontal cortex impairs the integration of visual space across eye movements. We asked 9 healthy subjects to report the direction of transsaccadic stimulus displacements and applied TMS before the actual experiment in a novel offline stimulation protocol, continuous theta-burst stimulation (cTBS). A systematic perceptual distortion was observed after stimulation over the right frontal cortex that was best explained by an internal underestimation of executed eye movement amplitudes. cTBS apparently disturbed an internal prediction process for contraversive saccades, while the metrics of associated oculomotor actions remained unchanged. Our findings suggest an important role of the frontal cortex in the internal monitoring of oculomotor actions for the perceptual integration of space across eye movements.

[1]  T P Gutteling,et al.  fMRI-guided TMS on cortical eye fields: the frontal but not intraparietal eye fields regulate the coupling between visuospatial attention and eye movements. , 2009, Journal of neurophysiology.

[2]  Carlo Miniussi,et al.  The neural mechanisms of the effects of transcranial magnetic stimulation on perception. , 2010, Journal of neurophysiology.

[3]  C. Bruce,et al.  Primate frontal eye fields. I. Single neurons discharging before saccades. , 1985, Journal of neurophysiology.

[4]  T. Paus,et al.  Transcranial Magnetic Stimulation of the Human Frontal Eye Field: Effects on Visual Perception and Attention , 2002, Journal of Cognitive Neuroscience.

[5]  C. Ploner,et al.  Human thalamus contributes to perceptual stability across eye movements , 2009, Proceedings of the National Academy of Sciences.

[6]  C. W. Hess,et al.  Transcranial stimulation of the human frontal eye field by magnetic pulses , 2004, Experimental Brain Research.

[7]  Marc A Sommer,et al.  The frontal eye field as a prediction map. , 2008, Progress in brain research.

[8]  A. Mizuno,et al.  A change of the leading player in flow Visualization technique , 2006, J. Vis..

[9]  R. Rafal,et al.  Localization of the human frontal eye fields and motor hand area with transcranial magnetic stimulation and magnetic resonance imaging , 1998, Neuropsychologia.

[10]  K. Hoffmann,et al.  Neural Mechanisms of Saccadic Suppression , 2002, Science.

[11]  B. Bridgeman,et al.  Postsaccadic target blanking prevents saccadic suppression of image displacement , 1996, Vision Research.

[12]  Tony Ro,et al.  Maintenance of Visual Stability in the Human Posterior Parietal Cortex , 2007, Journal of Cognitive Neuroscience.

[13]  J. Rothwell,et al.  Theta Burst Stimulation of the Human Motor Cortex , 2005, Neuron.

[14]  Robert H. Wurtz,et al.  Influence of the thalamus on spatial visual processing in frontal cortex , 2006, Nature.

[15]  Justin A. Harris,et al.  The Functional Effect of Transcranial Magnetic Stimulation: Signal Suppression or Neural Noise Generation? , 2008, Journal of Cognitive Neuroscience.

[16]  M. Lappe,et al.  Motor signals in visual localization. , 2010, Journal of vision.

[17]  E. Wassermann,et al.  A safety screening questionnaire for transcranial magnetic stimulation , 2001, Clinical Neurophysiology.

[18]  F A Wichmann,et al.  Ning for Helpful Comments and Suggestions. This Paper Benefited Con- Siderably from Conscientious Peer Review, and We Thank Our Reviewers the Psychometric Function: I. Fitting, Sampling, and Goodness of Fit , 2001 .

[19]  J Douglas Crawford,et al.  TMS over human frontal eye fields disrupts trans-saccadic memory of multiple objects. , 2010, Cerebral cortex.

[20]  Bruce Bridgeman,et al.  Failure to detect displacement of the visual world during saccadic eye movements , 1975, Vision Research.

[21]  Norio Izumi,et al.  Broadening the visualization frontier , 2007, J. Vis..

[22]  Felix Wichmann,et al.  The psychometric function: I , 2001 .

[23]  Carlo Miniussi,et al.  The mechanism of transcranial magnetic stimulation in cognition , 2010, Cortex.

[24]  T. Vilis,et al.  Gaze-Centered Updating of Visual Space in Human Parietal Cortex , 2003, The Journal of Neuroscience.

[25]  W. Heide,et al.  Cortical control of double‐step saccades: Implications for spatial orientation , 1995, Annals of neurology.

[26]  M. Goldberg,et al.  Saccadic dysmetria in a patient with a right frontoparietal lesion. The importance of corollary discharge for accurate spatial behaviour. , 1992, Brain : a journal of neurology.

[27]  J. L. Conway,et al.  Effects of frontal eye field and superior colliculus ablations on eye movements. , 1979, Science.

[28]  M. Goldberg,et al.  Spatial processing in the monkey frontal eye field. I. Predictive visual responses. , 1997, Journal of neurophysiology.

[29]  Arnold Ziesche,et al.  Computational models of spatial updating in peri-saccadic perception , 2011, Philosophical Transactions of the Royal Society B: Biological Sciences.

[30]  P. Jezzard,et al.  Neurochemical Effects of Theta Burst Stimulation as Assessed by Magnetic Resonance Spectroscopy , 2009, Journal of neurophysiology.

[31]  G. Thickbroom,et al.  Transcranial magnetic stimulation of the human frontal eye field , 1996, Journal of the Neurological Sciences.

[32]  M. Segraves,et al.  Muscimol-induced inactivation of monkey frontal eye field: effects on visually and memory-guided saccades. , 1999, Journal of neurophysiology.

[33]  R. Andersen,et al.  Space representation for eye movements is more contralateral in monkeys than in humans , 2010, Proceedings of the National Academy of Sciences.

[34]  Edward J. Tehovnik,et al.  Reversible inactivation of macaque frontal eye field , 1997, Experimental Brain Research.

[35]  M R Leek,et al.  An interleaved tracking procedure to monitor unstable psychometric functions. , 1991, The Journal of the Acoustical Society of America.

[36]  Kae Nakamura,et al.  Updating of the visual representation in monkey striate and extrastriate cortex during saccades , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[37]  H. Deubel Localization of targets across saccades: Role of landmark objects , 2004 .

[38]  R. Deichmann,et al.  Concurrent TMS-fMRI and Psychophysics Reveal Frontal Influences on Human Retinotopic Visual Cortex , 2006, Current Biology.

[39]  R. Rafal,et al.  Transcranial Magnetic Stimulation of the Prefrontal Cortex Delays Contralateral Endogenous Saccades , 1997, Journal of Cognitive Neuroscience.

[40]  Christopher D Chambers,et al.  Parietal stimulation destabilizes spatial updating across saccadic eye movements , 2007, Proceedings of the National Academy of Sciences.

[41]  D. Burr,et al.  Selective depression of motion sensitivity during saccades. , 1982, The Journal of physiology.

[42]  Anna C Nobre,et al.  FEF TMS affects visual cortical activity. , 2006, Cerebral cortex.

[43]  Heiner Deubel,et al.  Post-saccadic location judgments reveal remapping of saccade targets to non-foveal locations. , 2009, Journal of vision.

[44]  M. Sommer,et al.  Corollary discharge across the animal kingdom , 2008, Nature Reviews Neuroscience.

[45]  C. Genovese,et al.  Spatial Updating in Human Parietal Cortex , 2003, Neuron.

[46]  T. Paus Location and function of the human frontal eye-field: A selective review , 1996, Neuropsychologia.

[47]  Darren R Gitelman,et al.  ILAB: A program for postexperimental eye movement analysis , 2002, Behavior research methods, instruments, & computers : a journal of the Psychonomic Society, Inc.

[48]  R. Wurtz,et al.  A Pathway in Primate Brain for Internal Monitoring of Movements , 2002, Science.

[49]  B. Gaymard,et al.  Eye movement disorders after frontal eye field lesions in humans , 2004, Experimental Brain Research.

[50]  Markus Lappe,et al.  Motor space structures perceptual space: Evidence from human saccadic adaptation , 2007, Brain Research.

[51]  Thomas Kammer,et al.  Mechanisms and Applications of Theta-burst rTMS on the Human Motor Cortex , 2009, Brain Topography.

[52]  Walter Senn,et al.  Repetitive TMS over the human oculomotor cortex: Comparison of 1-Hz and theta burst stimulation , 2006, Neuroscience Letters.

[53]  J Douglas Crawford,et al.  Transcranial Magnetic Stimulation over Posterior Parietal Cortex Disrupts Transsaccadic Memory of Multiple Objects , 2008, The Journal of Neuroscience.

[54]  I Daum,et al.  The role of the human thalamus in processing corollary discharge. , 2005, Brain : a journal of neurology.

[55]  Shinsuke Shimojo,et al.  Compression of space in visual memory , 2001, Vision Research.

[56]  M. Sommer,et al.  Frontal Eye Field Neurons with Spatial Representations Predicted by Their Subcortical Input , 2009, The Journal of Neuroscience.

[57]  J R Duhamel,et al.  The updating of the representation of visual space in parietal cortex by intended eye movements. , 1992, Science.

[58]  C. Pierrot-Deseilligny,et al.  Effects of cortical lesions on saccadic: eye movements in humans. , 2002, Annals of the New York Academy of Sciences.

[59]  Christoph J. Ploner,et al.  Effects of Cortical Lesions on Saccadic , 2002 .

[60]  P. Schwartzkroin,et al.  Neural mechanisms. , 1994, Science.

[61]  Alan Cowey,et al.  Transcranial magnetic stimulation and cognitive neuroscience , 2000, Nature Reviews Neuroscience.