Design methodology of piezoelectric energy-harvesting skin using topology optimization

This paper describes a design methodology for piezoelectric energy harvesters that thinly encapsulate the mechanical devices and exploit resonances from higher-order vibrational modes. The direction of polarization determines the sign of the piezoelectric tensor to avoid cancellations of electric fields from opposite polarizations in the same circuit. The resultant modified equations of state are solved by finite element method (FEM). Combining this method with the solid isotropic material with penalization (SIMP) method for piezoelectric material, we have developed an optimization methodology that optimizes the piezoelectric material layout and polarization direction. Updating the density function of the SIMP method is performed based on sensitivity analysis, the sequential linear programming on the early stage of the optimization, and the phase field method on the latter stage of the optimization to obtain clear optimal shapes without intermediate density. Numerical examples are provided that illustrate the validity and utility of the proposed method.

[1]  Raed I. Bourisli,et al.  Optimization of Smart Beams for Maximum Modal Electromechanical Coupling Using Genetic Algorithms , 2010 .

[2]  M. Bendsøe,et al.  Topology Optimization: "Theory, Methods, And Applications" , 2011 .

[3]  Ann Marie Sastry,et al.  Powering MEMS portable devices—a review of non-regenerative and regenerative power supply systems with special emphasis on piezoelectric energy harvesting systems , 2008 .

[4]  E. M. Lifshitz,et al.  Electrodynamics of continuous media , 1961 .

[5]  Xiaoming Wang,et al.  A level set method for structural topology optimization , 2003 .

[6]  H. Gea,et al.  Topology optimization of energy harvesting devices using piezoelectric materials , 2009 .

[7]  S. Beeby,et al.  Energy harvesting vibration sources for microsystems applications , 2006 .

[8]  M. Bendsøe,et al.  Generating optimal topologies in structural design using a homogenization method , 1988 .

[9]  Kathrin Abendroth,et al.  Nonlinear Finite Elements For Continua And Structures , 2016 .

[10]  William W. Clark,et al.  Piezoelectric Energy Harvesting with a Clamped Circular Plate: Experimental Study , 2005 .

[11]  Don Berlincourt,et al.  3 – Piezoelectric and Piezomagnetic Materials and Their Function in Transducers , 1964 .

[12]  G. Allaire,et al.  Structural optimization using sensitivity analysis and a level-set method , 2004 .

[13]  Kanjuro Makihara,et al.  Low energy dissipation electric circuit for energy harvesting , 2006 .

[14]  Yoon Young Kim,et al.  Layout design optimization for magneto-electro-elastic laminate composites for maximized energy conversion under mechanical loading , 2010 .

[15]  E.C.N. Silva,et al.  Dynamic Design of Piezoelectric Laminated Sensors and Actuators using Topology Optimization , 2010 .

[16]  Daniel J. Inman,et al.  A Distributed Parameter Electromechanical Model for Cantilevered Piezoelectric Energy Harvesters , 2008 .

[17]  Stefano Gonella,et al.  Interplay between phononic bandgaps and piezoelectric microstructures for energy harvesting , 2009 .

[18]  S. Priya Advances in energy harvesting using low profile piezoelectric transducers , 2007 .

[19]  D. Inman,et al.  A Review of Power Harvesting from Vibration using Piezoelectric Materials , 2004 .

[20]  Chengkuo Lee,et al.  Design and optimization of wafer bonding packaged microelectromechanical systems thermoelectric power generators with heat dissipation path , 2009 .

[21]  Emílio Carlos Nelli Silva,et al.  Topology optimization of smart structures: design of piezoelectric plate and shell actuators , 2005 .

[22]  Shinji Nishiwaki,et al.  Shape and topology optimization based on the phase field method and sensitivity analysis , 2010, J. Comput. Phys..

[23]  Jae-Eun Kim,et al.  Multi-physics interpolation for the topology optimization of piezoelectric systems , 2010 .

[24]  M. Bendsøe,et al.  Material interpolation schemes in topology optimization , 1999 .

[25]  Wing Kam Liu,et al.  A level set approach for optimal design of smart energy harvesters , 2010 .

[26]  Daniel J. Inman,et al.  Effect of Strain Nodes and Electrode Configuration on Piezoelectric Energy Harvesting From Cantilevered Beams , 2009 .

[27]  M. Zhou,et al.  The COC algorithm, Part II: Topological, geometrical and generalized shape optimization , 1991 .

[28]  T. E. Bruns,et al.  Numerical methods for the topology optimization of structures that exhibit snap‐through , 2002 .

[29]  W. Carter,et al.  Extending Phase Field Models of Solidification to Polycrystalline Materials , 2003 .

[30]  Sang-Gook Kim,et al.  DESIGN CONSIDERATIONS FOR MEMS-SCALE PIEZOELECTRIC MECHANICAL VIBRATION ENERGY HARVESTERS , 2005 .

[31]  D. Inman,et al.  On Mechanical Modeling of Cantilevered Piezoelectric Vibration Energy Harvesters , 2008 .

[32]  Soobum Lee,et al.  A new piezoelectric energy harvesting design concept: multimodal energy harvesting skin , 2011, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[33]  Henry A. Sodano,et al.  A review of power harvesting using piezoelectric materials (2003–2006) , 2007 .

[34]  G. Allaire,et al.  Shape optimization by the homogenization method , 1997 .

[35]  Byeng D. Youn,et al.  Robust segment-type energy harvester and its application to a wireless sensor , 2009 .

[36]  Kurt Maute,et al.  Design of Piezoelectric Energy Harvesting Systems: A Topology Optimization Approach Based on Multilayer Plates and Shells , 2009 .

[37]  M. Bendsøe Optimal shape design as a material distribution problem , 1989 .

[38]  Grégoire Allaire Conception optimale de structures , 2007 .

[39]  William W. Clark,et al.  Piezoelectric Energy Harvesting with a Clamped Circular Plate: Analysis , 2005 .

[40]  Yonas Tadesse,et al.  Multimodal Energy Harvesting System: Piezoelectric and Electromagnetic , 2009 .

[41]  B. N. Cole,et al.  Plates and Shells , 1965, Nature.

[42]  Jan M. Rabaey,et al.  A study of low level vibrations as a power source for wireless sensor nodes , 2003, Comput. Commun..