The Computing Capacity of Three-Input Multiple-Valued One-Threshold Perceptrons

In this paper, an exact and general formula is derived for the number of linear partitions of a given point set V in three-dimensional space, depending on the configuration formed by the points of V. The set V can be a multi-set, that is it may contain points that coincide. Based on the formula, we obtain an efficient algorithm for counting the number of k-valued logic functions simulated by a three-input k-valued one-threshold perceptron.

[1]  Jovisa D. Zunic,et al.  On the Number of Linear Partitions of the (m, n)-Grid , 1991, Inf. Process. Lett..

[2]  Herbert Edelsbrunner,et al.  Algorithms in Combinatorial Geometry , 1987, EATCS Monographs in Theoretical Computer Science.

[3]  Zvonko G. Vranesic,et al.  Synthesis of Multivalued Multithreshold Functions for CCD Implementation , 1986, IEEE Transactions on Computers.

[4]  Ivan Stojmenovic,et al.  Minimization of multivalued multithreshold perceptrons using genetic algorithms , 1998, Proceedings. 1998 28th IEEE International Symposium on Multiple- Valued Logic (Cat. No.98CB36138).

[5]  Sverrir Olafsson,et al.  The Capacity of Multilevel Threshold Functions , 1988, IEEE Trans. Pattern Anal. Mach. Intell..

[6]  T. Kailath,et al.  Discrete Neural Computation: A Theoretical Foundation , 1995 .

[7]  Marvin Minsky,et al.  Perceptrons: An Introduction to Computational Geometry , 1969 .

[8]  Ivan Stojmenovic,et al.  Synthesis of multiple-valued logic functions by neural networks , 1998 .

[9]  Ryuzo Takiyama Multiple threshold perceptron , 1978, Pattern Recognit..

[10]  Ivan Stojmenovic,et al.  STRIP - a strip-based neural-network growth algorithm for learning multiple-valued functions , 2001, IEEE Trans. Neural Networks.

[11]  Ivan Stojmenovic,et al.  On the number of multilinear partitions and the computing capacity of multiple-valued multiple-threshold perceptrons , 2003, IEEE Trans. Neural Networks.

[12]  Zoran Obradovic,et al.  Learning with Discrete Multi-valued Neurons , 1990, J. Comput. Syst. Sci..

[13]  Julius T. Tou,et al.  Pattern Recognition Principles , 1974 .

[14]  Zoran Obradovic,et al.  Computing with Discrete Multi-Valued Neurons , 1992, J. Comput. Syst. Sci..

[15]  Richard O. Duda,et al.  Pattern classification and scene analysis , 1974, A Wiley-Interscience publication.

[16]  Ivan Stojmenovic,et al.  Learning with permutably homogeneous multiple-valued multiple-threshold perceptrons , 1998, Proceedings. 1998 28th IEEE International Symposium on Multiple- Valued Logic (Cat. No.98CB36138).

[17]  Ryuzo Takiyama,et al.  The Separating Capacity of a Multithreshold Threshold Element , 1985, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[18]  Peter E. Hart,et al.  Pattern classification and scene analysis , 1974, A Wiley-Interscience publication.