Polarization in Lidar

[1]  Kenneth Sassen,et al.  Indirect climate forcing over the western US from Asian dust storms , 2002 .

[2]  Edward V. Browell,et al.  Analysis of lidar observations of Arctic polar stratospheric clouds during January 1989 , 2000 .

[3]  K. N. Liou,et al.  Finite Difference Time Domain Method for Light Scattering by Nonspherical and Inhomogeneous Particles , 2000 .

[4]  J D Houston,et al.  Four-component polarization measurement of lidar atmospheric scattering. , 1978, Applied optics.

[5]  Kenneth Sassen,et al.  Midlatitude cirrus cloud climatology from the Facility for Atmospheric Remote Sensing. IV. Optical displays. , 2003, Applied optics.

[6]  K. Sassen,et al.  Investigation of relationships between Ka-band radar reflectivity and ice and liquid water contents , 1994 .

[7]  J. Hovenier,et al.  Depolarization of light backscattered by randomly oriented nonspherical particles. , 1995, Optics letters.

[8]  Kenneth Sassen Deep Orographic Cloud Structure and Composition Derived from Comprehensive Remote Sensing Measurements , 1984 .

[9]  Paul J. DeMott,et al.  Saharan dust storms and indirect aerosol effects on clouds: CRYSTAL‐FACE results , 2003 .

[10]  Michael I. Mishchenko,et al.  Depolarization of lidar returns by small ice crystals: An application to contrails , 1998 .

[11]  K. Liou,et al.  Laser Sensing of Cloud Composition: A Backscattered Depolarization Technique , 1974 .

[12]  K Sassen Corona-producing cirrus cloud properties derived from polarization lidar and photographic analyses. , 1991, Applied optics.

[13]  K. Sassen,et al.  Contrail properties derived from high‐resolution polarization lidar studies during SUCCESS , 1998 .

[14]  W. Eberhard Ice-cloud depolarization of backscatter for CO(2) and other infrared lidars. , 1992, Applied optics.

[15]  Y. Takano,et al.  Scattering phase matrix for hexagonal ice crystals computed from ray optics. , 1985, Applied optics.

[16]  G. Gobbi,et al.  Polarization lidar returns from aerosols and thin clouds: a framework for the analysis. , 1998, Applied optics.

[17]  Kenneth Sassen,et al.  Depolarization of Laser Light Backscattered by Artificial Clouds , 1974 .

[18]  J. Slusser,et al.  On Rayleigh Optical Depth Calculations , 1999 .

[19]  Bruce T. Draine,et al.  The Discrete Dipole Approximation for Light Scattering by Irregular Targets , 2000 .

[20]  G. Roy,et al.  Strong dependence of rain-induced lidar depolarization on the illumination angle: experimental evidence and geometrical-optics interpretation. , 2001, Applied optics.

[21]  Error analysis of Raman differential absorption lidar ozone measurements in ice clouds. , 2000, Applied optics.

[22]  Sonia M. Kreidenweis,et al.  African dust aerosols as atmospheric ice nuclei , 2003 .

[23]  Kengo Iokibe,et al.  Ground‐based network observation of Asian dust events of April 1998 in east Asia , 2001 .

[24]  Kenneth Sassen,et al.  A Midlatitude Cirrus Cloud Climatology from the Facility for Atmospheric Remote Sensing. Part II: Microphysical Properties Derived from Lidar Depolarization , 2001 .

[25]  Larry D. Travis,et al.  T-Matrix method and its applications , 2000 .

[26]  S. Pal,et al.  Polarization anisotropy in lidar multiple scattering from clouds. , 1980, Applied optics.

[27]  J. Spinhirne,et al.  Cloud top remote sensing by airborne lidar. , 1982, Applied optics.

[28]  Kenneth Sassen,et al.  Cloud Type and Macrophysical Property Retrieval Using Multiple Remote Sensors , 2001 .

[29]  Kenneth Sassen,et al.  Observations by Lidar of Linear Depolarization Ratios for Hydrometeors. , 1971 .

[30]  K. Sassen,et al.  Parry arc: a polarization lidar, ray-tracing, and aircraft case study. , 2000, Applied optics.

[31]  K. Sassen The Polarization Lidar Technique for Cloud Research: A Review and Current Assessment , 1991 .

[32]  Jean-Pierre Wolf,et al.  A four-wavelength depolarization backscattering LIDAR for polar stratospheric cloud monitoring , 1992 .

[33]  A. C. Dilley,et al.  Remote Sounding of High Clouds. Part VI: Optical Properties of Midlatitude and Tropical Cirrus , 1987 .

[34]  Luc R. Bissonnette,et al.  Range–Height Scans of Lidar Depolarization for Characterizing Properties and Phase of Clouds and Precipitation , 2001 .

[35]  M. Mishchenko,et al.  Applicability of regular particle shapes in light scattering calculations for atmospheric ice particles. , 1996, Applied optics.

[36]  Kenneth Sassen,et al.  The lidar dark band: An oddity of the radar bright band analogy , 1995 .

[37]  Gerald G. Mace,et al.  Cloud and Aerosol Research Capabilities at FARS: The Facility for Atmospheric Remote Sensing. , 2001 .

[38]  Andreas Behrendt,et al.  optical properties of PSC Ia‐enhanced at UV and visible wavelengths: Model and observations , 2000 .

[39]  Toshiyuki Murayama,et al.  Depolarization Ratio Measurements in the Atmospheric Boundary Layer by Lidar in Tokyo , 1996 .

[40]  K. Sassen Laser depolarisation ‘bright band’ from melting snowflakes , 1975, Nature.

[41]  V. Freudenthaler,et al.  Optical parameters of contrails from lidar measurements : Linear depolarization , 1996 .

[42]  A. Ansmann,et al.  Independent measurement of extinction and backscatter profiles in cirrus clouds by using a combined Raman elastic-backscatter lidar. , 1992, Applied optics.

[43]  K. Sassen,et al.  Lidar Multiple Scattering in Water Droplet Clouds: Toward an Improved Treatment , 1995 .

[44]  E. Eloranta Practical model for the calculation of multiply scattered lidar returns. , 1993, Applied optics.

[45]  K. H. Fricke,et al.  Investigation of the shape of noctilucent cloud particles by polarization lidar technique , 2002 .

[46]  S. H. Melfi,et al.  The 5–6 December 1991 FIRE IFO II Jet Stream Cirrus Case Study: Possible Influences of Volcanic Aerosols , 1995 .

[47]  C. M. R. Platt Lidar Backscatter from Horizontal Ice Crystal Plates , 1978 .

[48]  Kenneth Sassen,et al.  Lidar Backscatter Depolarization Technique for Cloud and Aerosol Research , 2000 .